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Preface

This volume contains 20 papers selected for presentation at the Third Interna-
tional Workshop on Mining Complex Data—MCD 2007-held in Warsaw, Poland,
September 17-21, 2007. MCD is a workshop series that started in conjunction
with the 5th IEEE International Conference on Data Mining (ICDM) in Hous-
ton, Texas, November 27-30, 2005. The second MCD workshop was held again in
conjunction with the ICDM Conference in Hong Kong, December 18-22, 2006.

Data mining and knowledge discovery, as stated in their early definition,
can today be considered as stable fields with numerous efficient methods and
studies that have been proposed to extract knowledge from data. Nevertheless,
the famous golden nugget is still challenging. Actually, the context evolved since
the first definition of the KDD process, and knowledge now has to be extracted
from data becoming more and more complex.

In the framework of data mining, many software solutions were developed for
the extraction of knowledge from tabular data (which are typically obtained from
relational databases). Methodological extensions were proposed to deal with data
initially obtained from other sources, e.g., in the context of natural language (text
mining) and image (image mining). KDD has thus evolved following a unimodal
scheme instantiated according to the type of the underlying data (tabular data,
text, images, etc.), which, at the end, always leads to working on the classical
double entry tabular format.

However, in a large number of application domains, this unimodal approach
appears to be too restrictive. Consider for instance a corpus of medical files.
Each file can contain tabular data such as results of biological analyses, textual
data coming from clinical reports, image data such as radiographies, echograms,
or electrocardiograms. In a decision-making framework, treating each type of in-
formation separately has serious drawbacks. It appears therefore more and more
necessary to consider these different data simultaneously, thereby encompassing
all their complexity.

Hence, a natural question arises: how could one combine data of different
nature and associate them with a same semantic unit, which is for instance
the patient? On a methodological level, one could also wonder how to compare
such complex units via similarity measures. The classical approach consists in
aggregating partial dissimilarities computed on components of the same type.
However, this approach tends to make superposed layers of information. It con-
siders that the whole entity is the sum of its components. By analogy with the
analysis of complex systems, it appears that knowledge discovery in complex
data cannot simply consist of the concatenation of the partial information ob-
tained from each part of the object. The aim, rather, would be to discover more
global knowledge giving a meaning to the components and associating them
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with the semantic unit. This fundamental information cannot be extracted by
the currently considered approaches and the available tools.

The new data mining strategies shall take into account the specificities of
complex objects (units with which the complex data are associated). These speci-
ficities are summarized hereafter:

Different kind. The data associated to an object are of different types. Be-
sides classical numerical, categorical or symbolic descriptors, text, image or au-
dio/video data are often available.

Diversity of the sources. The data come from different sources. As shown in
the context of medical files, the collected data can come from surveys filled in by
doctors, textual reports, measures acquired from medical equipment, radiogra-
phies, echograms, etc.

Evolving and distributed. It often happens that the same object is described
according to the same characteristics at different times or different places. For
instance, a patient may often consult several doctors, each one of them producing
specific information. These different data are associated with the same subject.

Linked to expert knowledge. Intelligent data mining should also take into
account external information, also called expert knowledge, which could be taken
into account by means of ontology. In the framework of oncology, for instance,
the expert knowledge is organized under the form of decision trees and is made
available under the form of best practice guides called standard option recom-
mendations (SOR).

Dimensionality of the data. The association of different data sources at differ-
ent moments multiplies the points of view and therefore the number of potential
descriptors. The resulting high dimensionality is the cause of both algorithmic
and methodological difficulties.

The difficulty of knowledge discovery in complex data lies in all these speci-
ficities.

We wish to express our gratitude to all members of the Program Committee
and the Organizing Committee. Hakim Hacid (Chair of the Organizing Com-
mittee) did a terrific job of putting together and maintaining the home page for
the workshop as well as helping us to prepare the workshop proceedings. Also,
our thanks are due to Alfred Hofmann of Springer for his support.

December 2007 Zbigniew W. Ras
Shusaku Tsumoto
Djamel Zighed
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Using Text Mining and Link Analysis for
Software Mining

Miha Grcar, Marko Grobelnik, and Dunja Mladenic

Jozef Stefan Institute, Dept. of Knowledge Technologies, Jamova 39,
1000 Ljubljana, Slovenia
{miha.grcar,marko.grobelnik,dunja.mladenic}@ijs.si

Abstract. Many data mining techniques are these days in use for ontology
learning — text mining, Web mining, graph mining, link analysis, relational data
mining, and so on. In the current state-of-the-art bundle there is a lack of “soft-
ware mining” techniques. This term denotes the process of extracting knowl-
edge out of source code. In this paper we approach the software mining task
with a combination of text mining and link analysis techniques. We discuss how
each instance (i.e. a programming construct such as a class or a method) can be
converted into a feature vector that combines the information about how the in-
stance is interlinked with other instances, and the information about its (textual)
content. The so-obtained feature vectors serve as the basis for the construction
of the domain ontology with OntoGen, an existing system for semi-automatic
data-driven ontology construction.

Keywords: Software mining, text mining, link analysis, graph and network
theory, feature vectors, ontologies, OntoGen, machine learning.

1 Introduction and Motivation

Many data mining (i.e. knowledge discovery) techniques are these days in use for
ontology learning — text mining, Web mining, graph mining, network analysis, link
analysis, relation data mining, stream mining, and so on [6]. In the current state-of-
the-art bundle mining of software code and the associated documentations is not ex-
plicitly addressed. With the growing amounts of software, especially open-source
software libraries, we argue that mining such data is worth considering as a new
methodology. Thus we introduce the term “software mining” to refer to such method-
ology. The term denotes the process of extracting knowledge (i.e. useful information)
out of data sources that typically accompany an open-source software library.

The motivation for software mining comes from the fact that the discovery of reus-
able software artifacts is just as important as the discovery of documents and multi-
media contents. According to the recent Semantic Web trends, contents need to be
semantically annotated with concepts from the domain ontology in order to be dis-
coverable by intelligent agents. Because the legacy content repositories are relatively
large, cheaper semi-automatic means for semantic annotation and domain ontology
construction are preferred to the expensive manual labor. Furthermore, when dealing

Z.W. Ras, S. Tsumoto, and D. Zighed (Eds.): MCD 2007, LNAI 4944, pp. 1 2008.
© Springer-Verlag Berlin Heidelberg 2008
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with software artifacts it is possible to go beyond discovery and also support other
user tasks such as composition, orchestration, and execution. The need for ontology-
based systems has yield several research and development projects supported by EU
that deal with this issue. One of these projects is TAO (http://www.tao-project.eu)
which stands for Transitioning Applications to Ontologies. In this paper we present
work in the context of software mining for the domain ontology construction. We
illustrate the proposed approach on the software mining case study based on GATE
[3], an open-source software library for natural-language processing written in Java
programming language.

We interpret “software mining” as being a combination of methods for structure
mining and for content mining. To be more specific, we approach the software mining
task with the techniques used for text mining and link analysis. The GATE case study
serves as a perfect example in this perspective. On concrete examples we discuss how
each instance (i.e. a programming construct such as a class or a method) can be repre-
sented as a feature vector that combines the information about how the instance is
interlinked with other instances, and the information about its (textual) content. The
so-obtained feature vectors serve as the basis for the construction of the domain on-
tology with OntoGen [4], a system for semi-automatic, data-driven ontology construc-
tion, or by using traditional machine learning algorithms such as clustering, classifica-
tion, regression, or active learning.

2 Related Work

When studying the literature we did not limit ourselves to ontology learning in the
context of software artifacts — the reason for this is in the fact that the more general
techniques also have the potential to be adapted for software mining.

Several knowledge discovery (mostly machine learning) techniques have been em-
ployed for ontology learning in the past. Unsupervised learning, classification, active
learning, and feature space visualization form the core of OntoGen [4]. OntoGen
employs text mining techniques to facilitate the construction of an ontology out of a
set of textual documents. Text mining seems to be a popular approach to ontology
learning because there are many textual sources available (one of the largest is the
Web). Furthermore, text mining techniques are shown to produce relatively good
results. In [8], the authors provide a lot of insight into the ontology learning in the
context of the Text-To-Onto ontology learning architecture. The authors employ a
multi-strategy learning approach and result combination (i.e. they combine outputs of
several different algorithms) to produce a coherent ontology definition. In this same
work a comprehensive survey of ontology learning approaches is presented.

Marta Sabou’s thesis [13] provides valuable insights into ontology learning for
Web Services. It summarizes ontology learning approaches, ontology learning tools,
acquisition of software semantics, and describes — in detail — their framework for
learning Web Service domain ontologies.

There are basically two approaches to building tools for software component discov-
ery: the information retrieval approach and the knowledge-based approach. The first
approach is based on the natural language documentation of the software components.
With this approach no interpretation of the documentation is made — the information is
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extracted via statistical analyses of the words distribution. On the other hand, the
knowledge-based approach relies on pre-encoded, manually provided information (the
information is provided by a domain expert). Knowledge-based systems can be
“smarter” than IR systems but they suffer from the scalability issue (extending the re-
pository is not “cheap”).

In [9], the authors present techniques for browsing amongst functionality related
classes (rather than inheritance), and retrieving classes from object-oriented libraries.
They chose the IR approach for which they believe is advantageous in terms of cost,
scalability, and ease of posing queries. They extract information from the source code
(a structured data source) and its associated documentation (an unstructured data
source). First, the source code is parsed and the relations, such as derived-from or
member-of, are extracted. They used a hierarchical clustering technique to form a
browse hierarchy that reflected the degree of similarity between classes (the similarity
is drawn from the class documentation rather than from the class structure). The simi-
larity between two classes was inferred from the browse hierarchy with respect to the
distance of the two classes from their common parent and the distance of their com-
mon parent from the root node.

In this paper we adopt some ideas from [9]. However, the purpose of our method-
ology is not to build browse hierarchies but rather to describe programming constructs
with feature vectors that can be used for machine learning. In other words, the pur-
pose of our methodology is to transform a source code repository into a feature space.
The exploration of this feature space enables the domain experts to build a knowledge
base in a “cheaper” semi-automatic interactive fashion.

3 Mining Content and Structure of Software Artifacts

In this section we present our approach and give an illustrative example of data pre-
processing from documented source code using the GATE software library. In the
context of the GATE case study the content is provided by the reference manual (tex-
tual descriptions of Java classes and methods), source code comments, programmer’s
guide, annotator’s guide, user’s guide, forum, and so on. The structure is provided
implicitly from these same data sources since a Java class or method is often refer-
enced from the context of another Java class or method (e.g. a Java class name is
mentioned in the comment of another Java class). Additional structure can be har-
vested from the source code (e.g. a Java class contains a member method that returns
an instance of another Java class), code snippets, and usage logs (e.g. one Java class is
often instantiated immediately after another). In this paper we limit ourselves to the
source code which also represents the reference manual (the so called JavaDoc) since
the reference manual is generated automatically out of the source code comments by a
documentation tool.

A software-based domain ontology should provide two views on the corresponding
software library: the view on the data structures and the view on the functionality
[13]. In GATE, these two views are represented with Java classes and their member
methods — these are evident from the GATE source code. In our examples we limit
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ourselves to Java classes (i.e. we deal with the part of the domain ontology that covers
the data structures of the system). This means that we will use the GATE Java classes
as text mining instances (and also as graph vertices when dealing with the structure).

r Class
Class J i - name
comment : type has its m
: Super-class
(?Iass\\ (base class)
modifiers [ public abstract class DocumentFormat
extends Ab: L T L
/\/\/\/\/%Q_ Implemented
/%% The MINE type of this format. - i
A ﬁeld{ s R interface

Method comment

A method

Fig. 1. Relevant parts of a typical Java class

Let us first take a look at a typical GATE Java class. It contains the following bits
of information relevant for the understanding of this example (see also Fig. 1):

¢ Class comment. It should describe the purpose of the class. It is used by the
documentation tool to generate the reference manual (i.e. JavaDoc).
It is mainly a source of textual data but also provides structure — two classes are
interlinked if the name of one class is mentioned in the comment of the other class.
¢ Class name. Each class is given a name that uniquely identifies the class. The
name is usually a composed word that captures the meaning of the class.
It is mainly a source of textual data but also provides structure — two classes are
interlinked if they share a common substring in their names.
¢ Field names and types. Each class contains a set of member fields. Each field has
a name (which is unique within the scope of the class) and a type. The type of a
field corresponds to a Java class.
Field names provide textual data. Field types mainly provide structure — two
classes are interlinked if one class contains a field that instantiates the other class.
¢ Field and method comments. Fields and methods can also be commented. The
comment should explain the purpose of the field or method.
These comments are a source of textual data. They can also provide structure in
the same sense as class comments do.
e Method names and return types. Each class contains a set of member methods.
Each method has a name, a set of parameters, and a return type. The return type of
a method corresponds to a Java class. Each parameter has a name and a type which
corresponds to a Java class.
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Methods can be treated similarly to fields with respect to taking their names and
return types into account. Parameter types can be taken into account similarly to
return types but there is a semantic difference between the two pieces of informa-
tion. Parameter types denote classes that are “used/consumed” for processing
while return types denote classes that are “produced’ in the process.

¢ Information about inheritance and interface implementation. Each class inher-
its (fields and methods) from a base class. Furthermore, a class can implement one
or more interfaces. An interface is merely a set of methods that need to be imple-
mented in the derived class.

The information about inheritance and interface implementation is a source of
structural information.

3.1 Textual Content

Textual content is taken into account by assigning a textual document to each unit of
the software code — in our illustrative example, to each GATE Java class. Suppose we
focus on a particular arbitrary class — there are several ways to form the correspond-
ing document.

It is important to include only those bits of text that are not misleading for the text
mining algorithms. At this point the details of these text mining algorithms are pretty
irrelevant provided that we can somehow evaluate the domain ontology that we build
in the end.

Another thing to consider is how to include composed names of classes, fields, and
methods into a document. We can insert each of these as:

e A omposed word (i.e. in its original form, e.g. “XmlDocumentFormat”),
e Sparate words (i.e. by inserting spaces, e.g. “Xml Document Format”), or
e Combination of both (e.g. “XmlDocumentFormat Xml Document Format™).

The text-mining algorithms perceive two documents that have many words in
common more similar that those that only share a few or no words. Breaking com-
posed names into separate words therefore results in a greater similarity between
documents that do not share full names but do share some parts of these names.

3.2 Determining the Structure

The basic units of the software code — in our case the Java classes — that we use as
text-mining instances are interlinked in many ways. In this section we discuss how
this structure which is often implicit can be determined from the source code.

As already mentioned, when dealing with the structure, we represent each class
(i.e. each text mining instance) by a vertex in a graph. We can create several graphs —
one for each type of associations between classes. This section describes several
graphs that can be constructed out of object-oriented source code.

Comment Reference Graph. Every comment found in a class can reference another
class by mentioning its name (for whatever the reason may be). In Fig. 1 we can see
four such references, namely the class DocumentFormat references classes XmlDocu-
mentFormat, RtfDocumentFormat, MpegDocumentFormat, and MimeType (denoted
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with “Comment reference” in the figure). A section of the comment reference graph for
the GATE case study is shown in Fig. 2. The vertices represent GATE Java classes
found in the “gate” subfolder of the GATE source code repository (we limited ourselves
to a subfolder merely to reduce the number of vertices for the purpose of the illustrative
visualization). An arc that connects two vertices is directed from the source vertex to-
wards the target vertex (these two vertices represent the source and the target class,
respectively). The weight of an arc (at least 1) denotes the number of times the name of
the target class is mentioned in the comments of the source class. The higher the weight,
the stronger is the association between the two classes. In the figure, the thickness of an
arc is proportional to its weight.
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Fig. 2. A section of the GATE comment reference graph

Name Similarity Graph. A class usually represents a data structure and a set of methods
related to it. Not every class is a data structure — it can merely be a set of (static) methods.
The name of a class is usually a noun denoting either the data structure that the class
represents (e.g. Boolean, ArrayList) or a “category” of the methods contained in the class
(e.g. System, Math). If the name is composed (e.g. ArrayList) it is reasonable to assume
that each of the words bears a piece of information about the class (e.g. an ArrayList is
some kind of List with the properties of an Array). Therefore it is also reasonable to say
that two classes that have more words in common are more similar to each other than two
classes that have fewer words in common. According to this intuition we can construct
the name similarity graph. This graph contains edges (i.e. undirected links) instead of
arcs. Two vertices are linked when the two classes share at least one word. The strength
of the link (i.e. the edge weight) can be computed by using the Jaccard similarity meas-
ure which is often used to measure the similarity of two sets of items (see
http://en.wikipedia.org /wiki/Jaccard_index). The name similarity graph for the GATE
case study is presented in Fig. 3. The vertices represent GATE Java classes found in the
“gate” subfolder of the GATE source code repository. The Jaccard similarity measure
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Fig. 3. The GATE name similarity graph. The most common substrings in names are shown for
the most evident clusters.

was used to weight the edges. Edges with weights lower than 0.6 and vertices of degree 0
were removed to simplify the visualization. In Fig. 3 we have removed class names and
weight values to clearly show the structure. The evident clustering of vertices is the result
of the Kamada-Kawai graph drawing algorithm [14] employed by Pajek [1] which was
used to create graph drawings in this paper. The Kamada-Kawai algorithm positions
vertices that are highly interlinked closer together.

Type Reference Graph. Field types and method return types are a valuable source of
structural information. A field type or a method return type can correspond to a class
in the scope of the study (i.e. a class that is also found in the source code repository
under consideration) — hence an arc can be drawn from the class to which the field or
the method belongs towards the class represented by the type.

Inheritance and Interface Implementation Graph. Last but not least, structure can
also be determined from the information about inheritance and interface implementation.
This is the most obvious structural information in an object-oriented source code and is
often used to arrange classes into the browsing taxonomy. In this graph, an arc that
connects two vertices is directed from the vertex that represents a base class (or an
interface) towards the vertex that represents a class that inherits from the base class (or
implements the interface). The weight of an arc is always 1.

4 Transforming Content and Structure into Feature Vectors

Many data-mining algorithms work with feature vectors. This is true also for the algo-
rithms employed by OntoGen and for the traditional machine learning algorithms
such as clustering or classification. Therefore we need to convert the content (i.e.
documents assigned to text-mining instances) and the structure (i.e. several graphs of
interlinked vertices) into feature vectors. Potentially we also want to include other
explicit features (e.g. in- and out-degree of a vertex).
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4.1 Converting Content into Feature Vectors

To convert textual documents into feature vectors we resort to a well-known text
mining approach. We first apply stemming' to all the words in the document collec-
tion (i.e. we normalize words by stripping them of their suffixes, e.g. stripping —
strip, suffixes — suffix). We then search for n-grams, i.e. sequences of consecutive
words of length n that occur in the document collection more than a certain amount of
times [11]. Discovered n-grams are perceived just as all the other (single) words.
After that, we convert documents into their bag-of-words representations. To weight
words (and n-grams), we use the TF-IDF weighting scheme ([6], Section 1.3.2).

4.2 Converting Structure into Feature Vectors

Let us repeat that the structure is represented in the form of several graphs in which
vertices correspond to text-mining instances. If we consider a particular graph, the
task is to describe each vertex in the graph with a feature vector.

For this purpose we adopt the technique presented in [10]. First, we convert arcs
(i.e. directed links) into edges (i.e. undirected links)z. The edges adopt weights from
the corresponding arcs. If two vertices are directly connected with more than one arc,
the resulting edge weight is computed by summing, maximizing, minimizing, or aver-
aging the arc weights (we propose summing the weights as the default option). Then
we represent a graph on N vertices as a NxN sparse matrix. The matrix is constructed
so that the Xth row gives information about vertex X and has nonzero components for
the columns representing vertices from the neighborhood of vertex X. The neighbor-
hood of a vertex is defined by its (restricted) domain. The domain of a vertex is the set
of vertices that are path-connected to the vertex. More generally, a restricted domain
of a vertex is a set of vertices that are path-connected to the vertex at a maximum
distance of d,,, steps [1]. The Xth row thus has a nonzero value in the Xth column
(because vertex X has zero distance to itself) as well as nonzero values in all the other
columns that represent vertices from the (restricted) domain of vertex X. A value in
the matrix represents the importance of the vertex represented by the column for the
description of the vertex represented by the row. In [10] the authors propose to com-
pute the values as 1/2%, where d is the minimum path length between the two vertices
(also termed the geodesic distance between two vertices) represented by the row and
column.

We also need to include edge weights into account. The easiest way is to use the
weights merely for thresholding. This means that we set a threshold and remove all
the edges that have weights below this threshold. After that we construct the matrix
which now indirectly includes the information about the weights (at least to a certain
extent).

' We use the Porter stemmer for English (see http://de.wikipedia.org/wiki/Porter-Stemmer-
Algorithmus).

% This is not a required step but it seems reasonable — a vertex is related to another vertex if they
are interconnected regardless of the direction. In other words, if vertex A references vertex B
then vertex B is referenced by vertex A.
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The simple approach described above is based on more sophisticated approaches
such as ScentTrails [12]. The idea is to metaphorically “waft” scent of a specific ver-
tex in the direction of its out-links (links with higher weights conduct more scent than
links with lower weights — the arc weights are thus taken into account explicitly). The
scent is then iteratively spread throughout the graph. After that we can observe how
much of the scent reached each of the other vertices. The amount of scent that reached
a target vertex denotes the importance of the target vertex for the description of the
source vertex.

The ScentTrails algorithm shows some similarities with the probabilistic frame-
work: starting in a particular vertex and moving along the arcs we need to determine
the probability of ending up in a particular target vertex within m steps. At each step
we can select one of the available outgoing arcs with the probability proportional to
the corresponding arc weight (assuming that the weight denotes the strength of the
association between the two vertices). The equations for computing the probabilities
are fairly easy to derive (see [7], Appendix C) but the time complexity of the compu-
tation is higher than that of ScentTrails and the first presented approach. The prob-
abilistic framework is thus not feasible for large graphs.

4.3 Joining Different Representations into a Single Feature Vector

The next issue to solve is how to create a feature vector for a vertex that is present in
several graphs at the same time (remember that the structure can be represented with
more than one graph) and how to then also “append” the corresponding content fea-
ture vector. In general, this can be done in two different ways:

e Horizontally. This means that feature vectors of the same vertex from different
graphs are first multiplied by factors ¢; (i = 1, ..., M) and then concatenated into a
feature vector with MXN components (M being the number of graphs and N the
number of vertices). The content feature vector is multiplied by 0, and simply
appended to the resulting structure feature vector.

e Vertically. This means that feature vectors of the same vertex from different
graphs are first multiplied by factors ¢; (i = 1, ..., M) and then summed together
(component-wise) resulting in a feature vector with N components (N being the
number of vertices). Note that the content feature vector cannot be summed to-
gether with the resulting structure feature vector since the features contained
therein carry a different semantic meaning (not to mention that the two vectors are
not of the same length). Therefore also in this case, the content feature vector is
multiplied by oy, and appended to the resulting structure feature vector.

Fig. 4 illustrates these two approaches. A factor ¢; (i = 1, ..., M) denotes the impor-
tance of information provided by graph i, relative to the other graphs. Factor 04, ;, on
the other hand, denotes the importance of information provided by the content relative
to the information provided by the structure. The easiest way to set the factors is to
either include the graph or the content (i.e. ¢ = 1), or to exclude it (i.e. ¢ = 0). In
general these factors can be quite arbitrary. Pieces of information with lower factors
contribute less to the outcomes of similarity measures used in clustering algorithms
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Fig. 4. The two different ways of joining several different representations of the same instance

Fig. 5. Two different semantic spaces obtained by two different weighting settings

than those with higher factors. Furthermore, many classifiers are sensitive to this kind
of weighting. For example, it has been shown in [2] that the SVM regression model is
sensitive to how this kind of factors are set.

OntoGen includes a feature-space visualization tool called Document Atlas [5]. It is
capable of visualizing high-dimensional feature space in two dimensions. The feature
vectors are presented with two-dimensional points while the Euclidean distances be-
tween these points reflect cosine distances between feature vectors. It is not possible to
perfectly preserve the distances from the high-dimensional space but even an approxi-
mation gives the user an idea of how the feature space looks like. Fig. 5 shows two such
visualizations of the GATE case study data. In the left figure, only the class comments
were taken into account (i.e. all the structural information was ignored and the docu-
ments assigned to the instances consisted merely of the corresponding class comments).
In the right figure the information from the name similarity graph was added to the
content information from the left figure. The content information was weighted twice
higher than the structural information. d,,,, of the name similarity graph was set to 0.44.
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The cluster marked in the left figure represents classes that provide functionality to
consult WordNet (see http://wordnet.princeton.edu) to resolve synonymy’. The cluster
containing this same functionality in the right figure is also marked. However, the
cluster in the right figure contains more classes many of which were not commented
thus were not assigned any content®. Contentless classes are stuck in the top left cor-
ner in the left figure because the feature-space visualization system did not know
where to put them due to the lack of association with other classes. This missing asso-
ciation was introduced with the information from the name similarity graph. From the
figures it is also possible to see that clusters are better defined in the right figure (note
the dense areas represented with light color).

With these visualizations we merely want to demonstrate the difference in seman-
tic spaces between two different settings. This is important because instances that are
shown closer together are more likely to belong to the same cluster or category after
applying clustering or classification. The weighting setting depends strongly on the
context of the application of this methodology.

5 Conclusions

In this paper we presented a methodology for transforming a source code repository
into a set of feature vectors, i.e. into a feature space. These feature vectors serve as the
basis for the construction of the domain ontology with OntoGen, a system for semi-
automatic data-driven ontology construction, or by using traditional machine learning
algorithms such as clustering, classification, regression, or active learning. The pre-
sented methodology thus facilitates the transitioning of legacy software repositories
into state-of-the-art ontology-based systems for discovery, composition, and poten-
tially also execution of software artifacts.

This paper does not provide any evaluation of the presented methodology. Basi-
cally, the evaluation can be performed either by comparing the resulting ontologies
with a golden-standard ontology (if such ontology exists) or, on the other hand, by
employing them in practice. In the second scenario, we measure the efficiency of the
users that are using these ontologies (directly or indirectly) in order to achieve certain
goals. The aspects on the quality of the methods presented herein will be the focus of
our future work.

We recently started developing an ontology-learning framework named LATINO
which stands for Link-analysis and text-mining toolbox [7]. LATINO will be an open-
source general purpose data mining platform providing (mostly) text mining, link
analysis, machine learning, and data visualization capabilities.

Acknowledgments. This work was supported by the Slovenian Research Agency and the
IST Programme of the European Community under TAO Transitioning Applications to
Ontologies (IST-4-026460-STP) and PASCAL Network of Excellence (IST-2002-506778).

3 The marked cluster in the left figure contains classes such as Word, VerbFrame, and Synset.

* The marked cluster in the right figure contains the same classes as the marked cluster in the
left figure but also some contentless classes such as Wordlmpl, VerbFramelmpl, (Muta-
ble)LexKBSynset(Impl), Synsetimpl, WordNetViewer, and IndexFileWordNetImpl.
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Abstract. Knowledge extraction represents an important issue that
concerns the ability to identify valid, potentially useful and understand-
able patterns from large data collections. Such a task becomes more
difficult if the domain of application cannot be represented by means of
an attribute-value representation. Thus, a more powerful representation
language, such as First-Order Logic, is necessary. Due to the complexity
of handling First-Order Logic formulee, where the presence of relations
causes various portions of one description to be possibly mapped in dif-
ferent ways onto another description, few works presenting techniques
for comparing descriptions are available in the literature for this kind
of representations. Nevertheless, the ability to assess similarity between
first-order descriptions has many applications, ranging from description
selection to flexible matching, from instance-based learning to clustering.

This paper tackles the case of Conceptual Clustering, where a new
approach to similarity evaluation, based on both syntactic and semantic
features, is exploited to support the task of grouping together similar
items according to their relational description. After presenting a frame-
work for Horn Clauses (including criteria, a function and composition
techniques for similarity assessment), classical clustering algorithms are
exploited to carry out the grouping task. Experimental results on real-
world datasets prove the effectiveness of the proposal.

1 Introduction

The large amount of information available nowadays makes more difficult the
task of extracting useful knowledge, i.e. valid, potentially useful and under-
standable patterns, from data collections. Such a task becomes more difficult
if the collection requires a more powerful representation language than simple
attribute-value vectors. First-order logic (FOL for short) is a powerful formal-
ism, that is able to express relations between objects and hence can overcome the
limitations shown by propositional or attribute-value representations. However,
the presence of relations causes various portions of one description to be possi-
bly mapped in different ways onto another description, which poses problems of
computational effort when two descriptions have to be compared to each other.

Z.W. Ra$, S. Tsumoto, and D. Zighed (Eds.): MCD 2007, LNATI 4944, pp. 13 2008.
© Springer-Verlag Berlin Heidelberg 2008
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Specifically, an important subclass of FOL refers to sets of Horn clauses, i.e.
logical formulz of the form I3 A --- A l, = lp where the [;’s are atoms, usually
represented in Prolog style as I :- l1, ..., 1, to be interpreted as “ly (called head
of the clause) is true, provided that {; and ... and [,, (called body of the clause)
are all true”. Without loss of generality [16], we will deal with the case of linked
Datalog clauses.

The availability of techniques for the comparison between FOL (sub-)des-
criptions could have many applications: helping a subsumption procedure to
converge quickly, guiding a generalization procedure by focussing on the compo-
nents that are more similar and hence more likely to correspond to each other,
implementing flexible matching, supporting instance-based classification tech-
niques or conceptual clustering. Cluster analysis concerns the organization of
a collection of unlabeled patterns into groups (clusters) of homogeneous ele-
ments based on their similarity. The similarity measure exploited to evaluate
the distance between elements is responsible for the effectiveness of the cluster-
ing algorithms. Hence, the comparison techniques are generally defined in terms
of a metric that must be carefully constructed if the clustering is to be relevant.
In supervised clustering there is an associated output class value for each ele-
ment and the efficacy of the metric exploited for the comparison of elements is
evaluated according to the principle that elements belonging to the same class
are clustered together as much as possible.

In the following sections, a similarity framework for first-order logic clauses
will be presented. Then, Section Bl will deal with related work, and Section
will show how the proposed formula and criteria are able to effectively guide a
clustering procedure for FOL descriptions. Lastly, Section [ will conclude the
paper and outline future work directions.

2 Similarity Formula

Intuitively, the evaluation of similarity between two items 7' and i’/ might be
based both on the presence of common features, which should concur in a positive
way to the similarity evaluation, and on the features of each item that are not
owned by the other, which should concur negatively to the whole similarity value
assigned to them [10]. Thus, plausible similarity parameters are:

n, the number of features owned by ' but not by i (residual of i wrt i");
[, the number of features owned both by i’ and by #";
m, the number of features owned by " but not by ¢’ (residual of i wrt ).

A novel similarity function that expresses the degree of similarity between i’ and
7" based on the above parameters, developed to overcome some limitations of
other functions in the literature (e.g., Tverski’s, Dice’s and Jaccard’s), is:

[+1 n [+1 (1)
l+n+2 Tlm+2

It takes values in ]0,1[, to be interpreted as the degree of similarity between
the two items. A complete overlapping of the two items tends to the limit of 1

sf(i',i") = sf(n,l,m) = 0.5
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as long as the number of common features grows. The full-similarity value 1 is
never reached, and is reserved to the exact identification of items, i.e. i’ = 7"
(in the following, we assume i’ # i”). Conversely, in case of no overlapping the
function will tend to 0 as long as the number of non-shared features grows. This
is consistent with the intuition that there is no limit to the number of different
features owned by the two descriptions, which contribute to make them ever
different. Since each of the two terms refers specifically to one of the two clauses
under comparison, a weight could be introduced to give different importance to
either of the two.

3 Similarity Criteria

The main contribution of this paper is in the exploitation of the formula in
various combinations that can assign a similarity degree to the different clause
constituents. In FOL formulee, terms represent specific objects; unary predicates
represent term properties and n-ary predicates express relationships. Hence, two
levels of similarity between first-order descriptions can be defined: the object
level, concerning similarities between terms in the descriptions, and the structure
one, referring to how the nets of relationships in the descriptions overlap.

Example 1. Let us consider, as a running example throughout the paper, the
following clause, representing a short description (with predicate names slightly
changed for the sake of brevity), drawn from the real-world domain of scientific
papers first-pages layout:

observation(d) :-
num pages(d,1), page 1(d,pl), page w(p1,612.0), page h(p1,792.0), last page(pl),
frame(pl,f4), frame(pl,f2), frame(pl,fl), frame(pl,f6), frame(pl,f12), frame(pl,f10),
frame(pl,f3), frame(p1,9),
t text(f4), w medium large(f4), h very very small(f4), center(f4), middle(f4),
t text(f2), w large(f2), h small(f2), center(f2), upper(f2),
t text(fl), w large(fl), h large(f1), center(fl), lower(f1),
t text(f6), w large(f6), h very small(f6), center(f6), middle(f6),
t text(f12), w medium(f12), h very very small(f12), left(f12), middle(f12),
t text(f10), w large(f10), h small(f10), center(f10), upper(f10),
t text(f3), w large(f3), h very small(f3), center(f3), upper(£3),
t text(f9), w large(f9), h medium(f9), center(f9), middle(f9),
on top(f4,f12), to right(f4,f12), to right(f6,f4), on top(f4,f6), to right(f1,f4),
on top(f4,f1), to right(f9,f4), on top(f4,f9),
on top(f10,f4), to right(f10,f4), on top(f2,f4), to right(f2,f4), on top(f3,f4),
to right(f3,f4),
on top(f2,f12), to right(f2,f12),
on top(f2,f6), valign center(f2,f6),
on top(f10,f2), valign center(f2,{10),
on top(f2,f1), valign center(f2,f1),
on top(f3,f2), valign center(f2,£3),
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on top(f2,19), valign center(f2,19),
on top(f12,f1), to right(f1,{12),

on top(f6,f1), valign center(f1,f6),
on top(f10,f1), valign center(f1,{10),
on top(f3,f1), valign center(f1,f3),
on top(f9,f1), valign center(f1,{9),
on top(f6,f{12), to right(f6,f12),

on top(f10,f6), valign center(f6,{10),
on top(f3,16), valign center(f6,£3),
on top(f9,f6), valign center(f6,9),
on top(f10,f12), to right(f10,f12),
on top(f3,f12), to right(f3,f12),

on top(f9,f12), to right(f9,f12),

on top(f3,f10), valign center(f10,f3),
on top(f10,19), valign center(f10,{9),
on top(f3,19), valign center(f3,19).

which reads as:“Observation d is made up of one page; page 1 is pl, which is
also the last one and has width 612 pixels and height 792 pixels, and contains
frames f4, 12, f1, 16, f12, f10, 3, f9. Frame f4 contains text, has width medium-
large and height very very small and is placed in the center (horizontally) and in
the midde (vertically) of the page; [...] frame f9 contains text, has large width
and medium height and is placed in the center (horizontally) and in the midde
(vertically) of the page. Frame f4 is on top of frames f12, f6, f1 and f9, the first
one on its right and the others on its left; frames 10, f2 and f3 are in turn on
top of frame f4, all of them on its right. [...]”.

3.1 Object Similarity

Consider two clauses C’ and C”. Call A’ = {a},...,al,} the set of terms in C’,
and A” = {af,...,al’,} the set of terms in C”. When comparing a pair of ob-
jects (a’,a”) € A’ x A", two kinds of object features can be distinguished: the
properties they own as expressed by unary predicates (characteristic features),
and the roles they play in n-ary predicates (relational features). More precisely,
a role can be seen as a couple R = (predicate, position) (written compactly as
R = predicate /arity.position), since different positions actually refer to differ-
ent roles played by the objects. For instance, a characteristic feature could be
male(X), while relational features in a parent(X,Y) predicate are the ‘parent’
role (parent/2.1) the ‘child’ role (parent/2.2).

Two corresponding similarity values can be associated to a’ and a”: a char-
acteristic similarity,

sfe(a’,a”) = sf(ne, le, me)

based on the set P’ of properties related to @’ and the set P” of properties related
to a”, for the following parameters:

n. = |P'\ P”| number of properties owned by o’ in C’ but not by «” in C”
(characteristic residual of o’ wrt a”);
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l. = |P’ N P"| number of common properties between a’ in C’ and a” in C”;
me = |P"\ P'| number of properties owned by «” in C” but not by a’ in C’
(characteristic residual of a” wrt o).

and a relational similarity,
sf.(a’,a") = sf(n,,l.,m,)

based on the multisets R’ and R” of roles played by a’ and a”, respectively, for
the following parameters:

n, = |R'\ R”| how many times o’ plays in C’ role(s) that o’ does not play in
C" (relational residual of a’ wrt a”);

I, = |R' N R”| number of times that both ¢’ in C’ and a” in C” play the same
role(s);

m, = |R”\ R'| how many times a” plays in C" role(s) that a’ does not play in
C’ (relational residual of a” wrt a’).

Overall, we can define the object similarity between two terms as
sfo(a’,a"”) = sfo(a’,a”) + sf,.(a’,a’)

Example 2. Referring to the clause concerning the document description, the set
of properties of f4 is

{t text,w medium large, h very very small, center, middle}
while for f9 it is
{t text,w large, h medium, center, middle}

The multiset of roles of f4 (where p x n denotes that p has n occurrences in the
multiset) is

{frame/2.2,0on top/2.1 x 4,0n top/2.2 x 3,to right/2.1,to right/2.2 x 6}
while for f9 it is

{frame/2.2,0on top/2.1x3, on top/2.2x4, to right/2.1x2,valign center/2.2x5}.

3.2 Structural Similarity

When checking for the structural similarity of two formulae, many objects can
be involved, and hence their mutual relationships represent a constraint on how
each of them in the former formula can be mapped onto another in the latter. The
structure of a formula is defined by the way in which n-ary atoms (predicates
applied to a number of terms equal to their arity) are applied to the various
objects to relate them. This is the most difficult part, since relations are specific
to the first-order setting and are the cause of indeterminacy in mapping (parts
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of) a formula into (parts of) another one. In the following, we will call compatible
two FOL (sub-)formulee that can be mapped onto each other without yielding
inconsistent term associations (i.e., a term in one formula cannot correspond to
different terms in the other formula).

Given an n-ary literal, we define its star as the multiset of n-ary predicates
corresponding to the literals linked to it by some common term (a predicate can
appear in multiple instantiations among these literals). The star similarity be-
tween two compatible n-ary literals I’ and I’ having stars S” and S”, respectively,
can be computed for the following parameters:

ns = |S"\ S”| how many more relations I’ has in C’ than [” has in C” (star
residual of I" wrt I”);

ls =15 NS”"| number of relations that both I’ in C” and [” in C” have in
common;

ms = [S”\ S’| how many more relations I has in C” than I’ has in C’ (star
residual of I” wrt ).

by taking into account also the object similarity values for all pairs of terms
included in the association 6 that map [’ onto [’ of their arguments in corre-
sponding positions:

sto(I,1") = sf(ng, ls, ms) + C*({sfo(t', ") }vr j1rco)
where C* is a composition function (e.g., the average).
Example 3. In the document example, the star of frame(pl, f4) is the multiset
{page 1/2,page w/2,page h/2,on top/2 x T ,to right/2 x T}
The star of on top(f4, f9) is the multiset
{frame/2 x 2,0on top/2 x 11,to right/2 x 8,valign center/2 x 5}

Then, Horn clauses can be represented as a graph in which atoms are the nodes,
and edges connect two nodes i they share some term, as described in the
following. In particular, we will deal with linked clauses only (i.e. clauses whose
associated graph is connected). Given a clause C, we define its associated graph
G¢, where the edges to be represented form a Directed Acyclic Graph (DAG),
stratified in such a way that the head is the only node at level 0 and each
successive level is made up by nodes not yet reached by edges that have at least
one term in common with nodes in the previous level. In particular, each node
in the new level is linked by an incoming edge to each node in the previous level
having among its arguments at least one term in common with it.

Example 4. Due to the graph representing the document example being too
complex for being represented in the page, let us consider, as an additional
example for the structural representation of a clause, the following toy clause:

C: h<a) = p<a7 b)vp(aa C)7p(d, a)a T(b, f)v O(b7 C)v Q(d7 6)7 t(fv g)v
m(a),¢(a),o(a), 7(a),a(b),7(b), ¢(b), 7(d), p(d), 7 (f), #(f), o (f)-
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In the graph G¢, the head represents the 0-level of the stratification. Then
directed edges may be introduced from h(X) to p(X,Y), p(X, Z) and p(W, X),
which yields level 1 of the stratification. Now the next level can be built, adding
directed edges from atoms in level 1 to the atoms not yet considered that share
a variable with them: (Y, U) — end of an edge starting from p(X,Y) -, o(Y, Z) -
end of edges starting from p(X,Y") and p(X, Z) — and ¢(W, W) — end of an edge
starting from p(W, X). The third level of the graph includes the only remaining
atom, s(U, V) — having an incoming edge from r(Y,U).

Now, all possible paths starting from the head and reaching leaf nodes are
univoquely determined, which reduces the amount of indeterminacy in the com-
parison. Given two clauses C’ and C”, we define the intersection between two
paths p’ =< l},...,ll, > in Ger and p” =< 1{,...,l,, > in Ge» as the pair of
longest compatible initial subsequences of p’ and p”:

pNp’ = (p1,p2) = (KU, ..., 0 > <U,....[0 >)s.t.
Vi=1,...,k:1l,..., I} compatible with I{,... I/ A
(k=n"Vk=n"VI,... I}, incompatible with I{,... [} )

and the two residuals as the incompatible trailing parts:
P\p =<lpy, 0y > PI\Y =<yl >)
Hence, the path similarity between p’ and p”, sf(p’, p’’), can be computed by
applying () to the following parameters:

npy = [p'\p"| =n' — k is the length of the trail incompatible sequence of p’ wrt
p’" (path residual of p’ wrt p”);

l, = |p1] = |p2| = k is the length of the maximum compatible initial sequence of
p' and p’;

my = |p" \p'| =n” — k is the length of the trail incompatible sequence of p”
wrt p’ (path residual of p” wrt p’).

by taking into account also the star similarity values for all pairs of literals
associated by the initial compatible sequences:

stp(p',p") = st(np, lp, mp) + CP ({5 (15, 1) Fiza,...0)
where C? is a composition function (e.g., the average).

Example 5. The paths in C (ignoring the head that, being unique, can be uni-
voquely matched) are

{< p(a,b),r(b, ), t(f,g) >, < p(a,b),o(b,c) >,< p(a,c),o(b,c) >,
<p(d,a),q(d,e) >}.

Some paths in the document example are

< num pages(d, 1) >, < page 1(d, pl), page w(pl, 612.0) >,
< page 1(d,pl),page h(pl,792.0) >, < page 1(d, pl),last page(pl) >,
< page 1(d,pl), frame(pl, f4),on top(f4, f9) >,
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< page 1(d,pl), frame(pl, f9), on top(f4, f9) >,
< page 1(d,pl), frame(pl, f9),valign center(f10, f9) >,

Note that no single criterion is by itself neatly discriminant, but their coop-
eration succeeds in assigning sensible similarity values to the various kinds of
components, and in distributing on each kind of component a proper portion of
the overall similarity, so that the difference becomes ever clearer as long as they
are composed one ontop the previous ones.

4 Clause Similarity

Now, similarity between two (tuples of) terms reported in the head predicates
of two clauses, according to their description reported in the respective bodies,
can be computed based on their generalization. In particular, one would like
to exploit their least general generalization, i.e. the most specific model for the
given pair of descriptions. Unfortunately, such a generalization is not easy to find:
either classical f-subsumption is used as a generalization model, and then one
can compute Plotkin’s least general generalization [I3], at the expenses of some
undesirable side-effects concerning the need of computing its reduced equivalent
(and also of some counter-intuitive aspects of the result), or, as most ILP learners
do, one requires the generalization to be a subset of the clauses to be generalized.
In the latter option, that we choose for the rest of the work, the 8o generalization
model [B], based on the Object Identity assumption, represents a supporting
framework with solid theoretical foundations to be exploited.

Given two clauses C' and C”, call C' = {ly,...,l;} their least general gen-
eralization, and consider the substitutions #’ and 6" such that Vi = 1,...,k :
1,00 =1, € C" and [;0” =1} € C”, respectively. Thus, a formula for assessing the
overall similarity between C’ and C”, called formulae similitudo and denoted fs,
can be computed according to the amounts of common and different literals:

n = |C’| — |C] how many literals in C’ are not covered by its least general gen-
eralization with respect to C” (clause residual of C" wrt C"');

[ = |C| = k maximal number of literals that can be put in correspondence be-
tween C” and C"" according to their least general generalization;

m = |C"] — |C)| how many literals in C” are not covered by its least general
generalization with respect to C’ (clause residual of C” wrt C”).

and of common and different objects:

n, = |terms(C")| — |terms(C)| how many terms in C” are not associated by its
least general generalization to terms in C" (object residual of C’ wrt C”');

lo = [terms(C)| maximal number of terms that can be put in correspondence in
C’ and C" as associated by their least general generalization;

me = |terms(C")| — [terms(C))| how many terms in C” are not associated by
its least general generalization to terms in C’ (object residual of C"” wrt C”).
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by taking into account also the star similarity values for all pairs of literals
associated by the least general generalization:

fs(C',C") = sf(n,l,m) - st(no,lo,mo) + C({sfs (1}, 1) }iz1, )

where C€ is a composition function (e.g., the average). This function evaluates
the similarity of two clauses according to the composite similarity of a maximal
subset of their literals that can be put in correspondence (which includes both
structural and object similarity), smoothed by adding the overall similarity in the
number of overlapping and different literals and objects between the two (whose
weight in the final evaluation should not overwhelm the similarity coming from
the detailed comparisons, hence the multiplication).

In particular, the similarity formula itself can be exploited for computing the
generalization. The path intersections are considered by decreasing similarity,
adding to the partial generalization generated thus far the common literals of
each pair whenever they are compatible [6]. The proposed similarity framework
proves actually able to lead towards the identification of the proper sub-parts to
be put in correspondence in the two descriptions under comparison, as shown in-
directly by the portion of literals in the clauses to be generalized that is preserved
by the generalization. More formally, the compression factor (computed as the
ratio between the length of the generalization and that of the shortest clause
to be generalized) should be as high as possible. Interestingly, on the document
dataset (see section [f] for details) the similarity-driven generalization preserved
on average more than 90% literals of the shortest clause, with a maximum of
99,48% (193 literals out of 194, against an example of 247) and just 0,006 vari-
ance. As a consequence, one woud expect that the produced generalizations are
least general ones or nearly so. Noteworthly, using the similarity function on the
document labelling task leads to runtime savings that range from 1/3 up to 1/2,
in the order of hours.

5 Related Works

Few works faced the definition of similarity or distance measures for first-order
descriptions. [4] proposes a distance measure based on probability theory applied
to the formula components. Compared to that, our function does not require the
assumptions and simplifying hypotheses to ease the probability handling, and no
a-priori knowledge of the representation language is required. It does not require
the user to set weights on the predicates’ importance, and is not based on the
presence of ‘mandatory’ relations, like for the G1 subclause in [4]. KGB [I]
uses a similarity function, parameterized by the user, to guide generalization;
our approach is more straightforward, and can be easily extended to handle
negative information in the clauses. In RIBL [3] object similarity depends on
the similarity of their attributes’ values and, recursively, on the similarity of the
objects related to them, which poses the problem of indeterminacy. [I7] presents
an approach for the induction of a distance on FOL examples, that exploits the
truth values of whether each clause covers the example or not as features for a
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distance on the space {0, 1}* between the examples. [I2] organizes terms in an
importance-related hierarchy, and proposes a distance between terms based on
interpretations and a level mapping function that maps every simple expression
on a natural number. [I4] presents a distance function between atoms based on
the difference with their lgg, and uses it to compute distances between clauses.
It consists of a pair where the second component allows to differentiate cases
where the first component cannot.

As pointed out, we focus on the identification and exploitation of similarity
measures for first-order descriptions in the clustering task. Many research efforts
on data representation, elements’ similarity and grouping strategies have pro-
duced several successful clustering methods (see [9] for a survey). The classical
strategies can be divided in bottom-up and top-down. In the former, each ele-
ment of the dataset is considered as a cluster. Successively, the algorithm tries
to group the clusters that are more similar according to the similarity measure.
This step is performed until the number of clusters the user requires as a final
result is reached, or the minimal similarity value among clusters is greater than
a given threshold. In the latter approach, known as hierarchical clustering, at
the beginning all the elements of the dataset form a unique cluster. Successively,
the cluster is partitioned into clusters made up of elements that are more similar
according to the similarity measure. This step is performed until the number of
clusters required by the user as a final result is reached. A further classification
is based on whether an element can be assigned (NotExclusive or Fuzzy Clus-
tering) or not (Exclusive or Hard Clustering) to more than one cluster. Also
the strategy exploited to partition the space is a criterion used to classify the
clustering techniques: in Partitive Clustering a representative point (centroid,
medoid, etc.) of the cluster in the space is chosen; Hierarchical Clustering pro-
duces a nested series of partitions by merging (Hierarchical Agglomerative) or
splitting (Hierarchical Divisive) clusters, Density-based Clustering considers the
density of the elements around a fixed point.

Closely related to data clustering is Conceptual Clustering, a Machine Learn-
ing paradigm for unsupervised classification which aims at generating a concept
description for each generated class. In conceptual clustering both the inherent
structure of the data and the description language, available to the learner, drive
cluster formation. Thus, a concept (regularity) in the data could not be learned
by the system if the description language is not powerful enough to describe
that particular concept (regularity). This problem arises when the elements si-
multaneously describe several objects whose relational structures change from
one element to the other. First-Order Logic representations allow to overcome
these problems. However, most of the clustering algorithms and systems work
on attribute-value representation (e.g., CLUSTER/2 [11], CLASSIT [8], COBWEB [7]).
Other systems such as LABYRINTH [I8] can deal with structured objects exploit-
ing a representation that is not powerful enough to express the dataset in a lot
of domains. There are few systems that cluster examples represented in FOL
(e.g., AUTOCLASS-1ike [I5], KBG [I]), some of which still rely on propositional
distance measures (e.g., TIC [2]).
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6 Experiments on Clustering

The proposed similarity framework was tested on the conceptual clustering task,
where a set of items must be grouped into homogeneous classes according to the
similarity between their first-order logic description. In particular, we adopted
the classical K-means clustering technique. However, since first-order logic for-
mulee do not induce an euclidean space, it was not possible to identify/build a
centroid prototype for the various clusters according to which the next distribu-
tion in the loop would be performed. For this reason, we based the distribution
on the concept of medoid prototypes, where a medoid is defined as the obser-
vation that actually belongs to a cluster and that has the minimum average
distance from all the other members of the cluster. As to the stop criterion, it
was set as the moment in which a new iteration outputs a partition already
seen in previous iterations. Note that it is different than performing the same
check on the set of prototypes, since different prototypes could yield the same
partition, while there cannot be several different sets of prototypes for one given
partition. In particular, it can happen that the last partition is the same as the
last-but-one, in which case a fixed point is reached and hence a single solution
has been found and has to be evaluated. Conversely, when the last partition
equals a previous partition, but not the last-but-one one, a loop is identified,
and one cannot focus on a single minimum to be evaluated.

Experiments on Conceptual Clustering were run on a real-world dataset] con-
taining 353 descriptions of scientific papers first page layout, belonging to 4 dif-
ferent classes: Elsevier journals, Springer-Verlag Lecture Notes series (SVLN),
Journal of Machine Learning Research (JMLR) and Machine Learning Journal
(MLJ). The complexity of such a dataset is considerable, and concerns several
aspects of the dataset: the journals layout styles are quite similar, so that it is
not easy to grasp the difference when trying to group them in distinct classes;
moreover, the 353 documents are described with a total of 67920 literals, for an
average of more than 192 literals per description (some descriptions are made
up of more than 400 literals); last, the description is heavily based on a part of
relation, expressed by the frame predicate, that increases indeterminacy.

Since the class of each document in the dataset is known, we performed a
supervised clustering: after hiding the correct class to the clustering procedure,
we provided it with the ‘anonymous’ dataset, asking for a partition of 4 clusters.
Then, we compared each outcoming cluster with each class, and assigned it to
the best-matching class according to precision and recall. In practice, we found
that for each cluster the precision-recall values were neatly high for one class,
and considerably low for all the others; moreover, each cluster had a different
best-matching class, so that the association and consequent evaluation became
straightforward.

The clustering procedure was run first on 40 documents randomly selected
from the dataset, then on 177 documents and lastly on the whole dataset, in
order to evaluate its performance behaviour when takling increasingly large data.

! http://lacam.di.uniba.it:8000/systems/inthelex/index.htm#datasets
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Table 1. Experimental results

Instances Cluster Class Intersection Prec (%) Rec (%) Total Overlapping

8 Elsevier (4) 4 50 100

40 6 SVLN (6) 5 83,33 83,33 35
8 JMLR (8) 8 100 100
18 MLJ (22) 18 100 81,82
30 Elsevier (22) 22 73,33 100
36 SVLN (38) 35 97,22 92,11

1 48 JMLR (45) 45 93,75 100 164
63 MLJ (72) 62 98,41 86,11
65  Elsevier (52) 52 80 100
65 SVLN (75) 64 98,46 85,33

353 105 JMLR (95) 95 90,48 100 320
118 MLJ (131) 115 97,46 87,79

Table 2. Experimental results statistics

Instances Runtime Comparisons Avg Runtime (sec) Prec (%) Rec (%) Pur (%)

40 25'24” 780 1,95 83,33 91,33 875
177 9h 34 45" 15576 2,21 90,68 94,56 92,66
353 39h 12' 07" 62128 2,27 91,60 93,28 92,35

Results are reported in Table [T} for each dataset size it reports the number of
instances in each cluster and in the corresponding class, the number of matching
instances between the two and the consequent precision (Prec) and recall (Rec)
values, along with the overall number of correctly split documents in the dataset.

Compound statistics, shown in Table [ report the average precision and re-
call for each dataset size, along with the overall accuracy, plus some information
about runtime and number of description comparisons to be carried out. The
overall results show that the proposed method is highly effective since it is able
to autonomously recognize the original classes with precision, recall and purity
(Pur) well above 80% and, for larger datasets, always above 90%. This is very
encouraging, especially in the perspective of the representation-related difficul-
ties (the lower performance on the reduced dataset can probably be explained
with the lack of sufficient information for properly discriminating the clusters,
and suggests further investigation). Runtime refers almost completely to the
computation of the similarity between all couples of observations: computing
each similarity takes on average about 2sec, which can be a reasonable time
considering the descriptions complexity and the fact that the prototype has no
optimization in this preliminary version. Also the semantic perspective is quite
satisfactory: an insight of the clustering outcomes shows that errors are made on
very ambiguous documents (the four classes have a very similary layout style),
while the induced cluster descriptions highlight interesting and characterizing
layout clues. Preliminary comparisons on the 177 dataset with other classical
measures report an improvement with respect to both Jaccard’s, Tverski’s and
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Dice’s measures up to +5,48% for precision, up to + 8,05% for recall and up to
+ 2,83% for purity.

7 Conclusions

Knowledge extraction concerns the ability to identify valid, potentially useful
and understandable patterns from large data collections. Such a task becomes
more difficult if the domain of application requires a First-Order Logic repre-
sentation language, due to the problem of indeterminacy in mapping portions
of descriptions onto each other. Nevertheless, the ability to assess similarity be-
tween first-order descriptions has many applications, ranging from description
selection to flexible matching, from instance-based learning to clustering.

This paper deals with Conceptual Clustering, and proposes a framework for
Horn Clauses similarity assessment. Experimental results on real-world datasets
prove that, endowing classical clustering algorithms with this framework, con-
siderable effectiveness can be reached. Future work will concern fine-tuning of
the similarity computation methodology, and a more extensive experimentation.
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Abstract. Finding temporally covariant variables is very important for clinical
practice because we are able to obtain the measurements of some examinations
very easily, while it takes a long time for us to measure other ones. Also, un-
expected covariant patterns give us new knowledge for temporal evolution of
chronic diseases. This paper focuses on clustering of trajectories of temporal se-
quences of two laboratory examinations. First, we map a set of time series con-
taining different types of laboratory tests into directed trajectories representing
temporal change in patients’ status. Then the trajectories for individual patients
are compared in multiscale and grouped into similar cases by using clustering
methods. Experimental results on the chronic hepatitis data demonstrated that the
method could find the groups of trajectories which reflects temporal covariance
of platelet, albumin and choline esterase.

1 Introduction

Hosptial information system (HIS) collects all the data from all the branches of de-
partments in a hospital, including laboratory tests,physiological tests, electronic pa-
tient records. Thus, HIS can be viewed as a large heterogenous database, which stores
chronological changes in patients’ status. Recent advances not only in informaiton tech-
nology, but also other developments in devices enable us to collect huge amount of tem-
poral data automatically, one of whose advantage is that we are able not only to analyze
the data within one patient, but also the data in a cross-sectoral manner. It may reveal a
underlying mechanism in temporal evolution of (chronic) diseases with some degree of
evidence, which can be used to predict or estimate a new case in the future. Especially,
finding temporally covariant variables is very important for clinical practice because we
are able to obtain the measurements of some examinations very easily, while it takes a
long time for us to measure other ones. Also, unexpected covariant patterns give us
new knowledge for temporal evolution of chronic diseases. However, despite of its im-
portance, large-scale analysis of time-series medical databases has rarely been reported
due to the following problems: (1) sampling intervals and lengths of data can be both
irregular, as they depend on the condition of each patient. (2) a time series can include
various types of events such as acute changes and chronic changes. When comparing
the time series, one is required to appropriately determine the correspondence of data
points to be compared taking into account the above issues. Additionally, the dimen-
sionality of data can be usually high due to the variety of medical examinations. These
fearures prevent us from using conventional time series analysis methods.

Z.W. Ras, S. Tsumoto, and D. Zighed (Eds.): MCD 2007, LNAI 4944, pp. 27-41] 2008.
(© Springer-Verlag Berlin Heidelberg 2008
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This paper presents a novel cluster analysis method for multivariate time-series data
on medical laboratory tests. Our method represents time series of test results as trajec-
tories in multidimensional space, and compares their structural similarity by using the
multiscale comparison technique [1]. It enables us to find the part-to-part correspon-
dences between two trajectories, taking into account the relationships between different
tests. The resultant dissimilarity can be further used as input for clustering algorithms
for finding the groups of similar cases. In the experiments we demonstrate the useful-
ness of our approach through the grouping tasks of artificially generated digit stroke
trajectories and medical test trajectories on chronic hepatitis patients.

The remainder of this paper is organized as follows. In Section [2| we describe the
methodoology, including preprocessing of the data. In Section[3]we show experimental
results on a synthetic data (digit strokes) and chronic hepatitis data (albumin-platelet
trajectories and cholinesterase-platelet trajectories). Finally, Section 3]is a conclusion
of this paper.

2 Methods

2.1 Overview

Figure [I] shows an overview of the whole process of clustering of trajectories. First,
we apply preprocessing of a raw temporal sequence for each variable (Subsection 2.2).
Secondly, a trajectory of laboratory tests is calculated for each patient, segmentation
technique is applied to each sequence for generation of a segmentation hiearchy (Sub-
section 2.3)). Third, we trace segemented sequences and search for matching between
two sequences in a hiearchical way (Subsection 2.4). Then, dissimilarities are calcu-
lated for matched sequences (Subsection 23] and 2.6). Finally, we apply clustering to
the dissimilarities obtained (Subsection 2.7).

2.2 Preprocessing

Time-series examination data is often represented as a tuple of examination date and
results. Interval of examinations is usually irregular, as it depends on the condition of
a patient. However, in the process of multiscale matching, it is neccessary to represent
time-series as a set of data points with a constant interval in order to represent the time
span by the number of data points. Therefore, we employed linear interpolation and
constructed new equi-interval data.

2.3 Multiscale Description of Trajectories by the Modified Bessel Function
Let us consider examination data for one person, consisting of I different time-series

examinations. Let us denote the time series of i-th examination by ex;(t), where i € I.
Then the trajectory of examination results, ¢(¢) is denoted by

c(t) = {exq(t), exa(t), ... exr(t)}
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Fig. 1. Overview of Trajectory Clustering

Next, let us denote an observation scale by ¢ and denote a Gaussian function with
scale parameter o2 by g(t, ). Then the time-series of the i-th examination at scale o,
EX,(t,0) is derived by convoluting ex; (t) with g(¢, o) as follows.

T exi(u) —t-w?
e

EX;(t,0) =ex;(t) @ g(t,0) = / 202 du

oo OV2T
Applying the above convolution to all examinations, we obtain the trajectory of exami-
nation results at scale o, C(t,0), as

C(t,O’) = {EXl(t,O'),EXg(t,O'),...,EX](t,O')}

By changing the scale factor o, we can represent the trajectory of examination results
at various observation scales. Figure [2] illustrates an example of multiscale represen-
tation of trajectories where I = 2. Increase of ¢ induces the decrease of convolution
weights for neighbors. Therefore, more flat trajectories with less inflection points will
be observed at higher scales.

Curvature of the trajectory at time point ¢ is defined by, for [ = 2,

_ EX{EXY + EX{EX}

K(t, o
(t,0) (EX|* + EX}?)3/2

where EX/ and EX/' denotes the first- and second-order derivatives of EX,(t, o) re-
spectively. The m-th order derivative of EX,(t,0), EX i(m) (t,0), is defined by

EX(771)(t7U) _ 0 E(;t(:n(t,(f)

K2

= ez;(t) ® g™ (t,0)
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Fig. 2. Multiscale representation and matching scheme

It should be noted that many of the real-world time-series data, including medical data,
can be discrete in time domain. Thus, a sampled Gaussian kernel is generally used for
calculation of EX(t, o), changing an integral to summation. However, Lindeberg [2]]
pointed out that, a sampled Gaussian may lose some of the properties that a continuous
Gaussian has, for example, non-creation of local extrema with the increase of scale.
Additionally, in a sampled Gaussian kernel, the center value can be relatively large and
imbalanced when the scale is very small. Ref. [2] suggests the use of kernel based on
the modified Bessel function, as it is derived by incorporating the discrete property.
Since this influences the description ability about detailed structure of trajectories, we
employed the Lindeberg’s kernel and derive EX;(t, o) as follows.

(oo}

EXi(t,0) = Y e “Ly(0)ex;(t —n)

n—=—oo

where I,,(o) denotes the modified Bessel function of order n. The first- and second-
order derivatives of EX,(t, o) are obtained as follows.

EX;(t,O’) = Z —ne_”ln(a)eaxi(t —n)
=—00 o
7" °© ]_ 77,2 _
EX;(t,o)= > (_ —1)e Ly(0)ex;(t—n).
—=. 0 0

2.4 Segment Hierarchy Trace and Matching

For each trajectory represented by multiscale description, we find the places of inflec-
tion points according to the sign of curvature. Then we divide each trajectory into a
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set of convex/concave segments, where both ends of a segment correspond to adja-

cent inflection points. Let A be a trajectory at scale k composed of M (¥) segments

Then A is represented by A*) = {agk) | i =1,2,---, M®)} where a; ) denotes

i th segment at scale k. Similarly, another trajectory B at scale h is represented by
=" j=1,2,---,N®}.

Next we chase the cross-scale correspondence of inflection points from top scales
to bottom scale. It defines the hierarchy of segments and enables us to guarantee the
connectivity of segments represented at different scales. Details of the algorithm for
checking segment hierarchy is available on ref. [[1]]. In order to apply the algorithm for
closed curve to open trajectory, we modified it to allow replacement of odd number of
segments at sequence ends, since cyclic property of a set of inflection points can be lost.

The main procedure of multiscale matching is to search the best set of segment pairs
that satisfies both of the following conditions:

1. Complete Match: By concatenating all segments, the original trajectory must be
completely formed without any gaps or overlaps.

2. Minimal Difference: The sum of segment dissimilarities over all segment pairs
should be minimized.

The search is performed throughout all scales. For example, in Figure 2] three con-

tiguous segments aéo) ( )

segment agQ) at upper scale 2, and the replaced segment well matches to one segment

O _ 4© ang

at the lowest scale of case A can be integrated into one

b( ) of case B at the lowest scale. Thus the set of the three segments as
one segment b3 will be considered as a candidate for corresponding segments. On the
other hand, segments such as aéo) and bflo) are similar even at the bottom scale without
any replacement. Therefore they will be also a candidate for corresponding segments.
In this way, if segments exhibit short-term similarity, they are matched at a lower scale,
and if they present long-term similarity, they are matched at a higher scale.

2.5 Local Segment Difference

In order to evaluate the structural (dis-)similarity of segments, we first describe the
structural feature of a segment by using shape parameters defined below.

1. Gradient at starting point: g(agy}f ))

2. Rotation angle: 9(a£,’f))

3. Velocity: v(agf))
Figure Blillustrates these parameters. Gradient represents the direction of the trajectory
at the beginning of the segment. Rotation angle represents the amount of change of

direction along the segment. Velocity represents the speed of change in the segment,
which is calculated by dividing segment length by the number of points in the segment.

Next, we define the local dissimilarity of two segments, agn) and b(h) as follows.

d(a® pMy = \/ (g(aE,’f)) (bSZ”))2 ¥ (e(aﬁ,’f)) - 9(b5§”))2

+ ’v(afﬁ)) — v(b;h))‘ +7 {cost(an’f)) + cost(bnh))}
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Fig. 3. Segment Parameters

where cost() denotes a cost function used for suppressing excessive replacement of
segments, and -y is the weight of costs. We define the cost function using local segment
dissimilarity as follows. For a segment agn) that replaces p segments a(o) agp_l at

the bottom scale,
r+p—1

cost(a Z d(a

2.6 Sequence Dissimilarity

After determining the best set of segment pairs, we newly calculate value-based dis-
similarity for each pair of matched segments. The local segment dissimilarity defined
in the previous section reflects the structural difference of segments, but does not re-
flect the difference of original sequence values; therefore, we calculate the value-based
dissimilarity that can be further used as a metric for proximity in clustering.

Suppose we obtained L pairs of matched segments after multiscale matching of tra-
jectories A and B. The value-based dissimilarity between A and B, D,q (A, B), is

defined as follows.
L

Dval(A7 B) = Z dval(ah ﬁl)

1=1
where a; denotes a set of contiguous segments of A at the lowest scale that constitutes
the {-th matched segment pair (I € L), and 3; denotes that of B. For example, suppose
O 4l of A and segment v\ of B in Figure [ constitute the I-th
matched pair. Then, o = ago) ~ aéo) and 3, = béo), respectively. dyq;(ay, §;) is the
difference between a; and J; in terms of data values at the peak and both ends of the
segments. For the i-th examination (i € T), dya, (o, 8;) is defined as

that segments a;

dyval, (1, B1) = peak;(cu) — peak;(3;)
+; {lefti(cu) —lefti(B)} + ; {right;(cu) — right;(51)}

where peak; (), le ft;(cy), and right;(«;) denote data values of the i-th examination
at the peak, left end and right end of segment «y, respectively. If a; or 3; is composed
of plural segments, the centroid of the peak points of those segments is used as the peak
of ay. Finally, d,4, is integrated over all examinations as follows.
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1
dval (ala ﬂl) = I ZZ: dvali (O[l, ﬂl)

2.7 Clustering

For clustering, we employ two methods: agglomerative hierarchical clustering (AHC)
[3] and rough set-based clustering (RC) [4]. The sequence comparison part performs
pairwise comparison for all possible pairs of time series, and then produces a dissim-
ilarity matrix. The clustering part performs grouping of trajectories according to the
given dissimilarity matrix.

3 Experimental Results

We applied our method to the chronic hepatitis dataset which was a common dataset
in ECML/PKDD discovery challenge 2002-2004 [3]]. The dataset contained time series
laboratory examinations data collected from 771 patients of chronic hepatitis B and C.
In this work, we focused on analyzing the temporal relationships between platelet count
(PLT), albumin (ALB) and cholinesterase (CHE), that were generally used to examine
the status of liver function. Our goals were set to: (1) find groups of trajectories that
exhibit interesting patterns, and (2) analyze the relationships between these patterns
and the stage of liver fibrosis.

We selected a total of 488 cases which had valid examination results for all of PLT,
ALB, CHE and liver biopsy. Constitution of the subjects classified by virus types and
administration of interferon (IFN) was as follows. Type B: 193 cases, Type C with IFN:
296 cases, Type C without IFN: 99 cases. In the following sections, we mainly describe
the results about Type C without IFN cases, which contained the natural courses of Type
C viral hepatitis.

Experiments were conducted as follows. This procedure was applied separately for
ALB-PLT, CHE-PLT and ALB-CHE trajectories.

1. Select a pair of cases (patients) and calculate the dissimilarity by using the proposed
method. Apply this procedure for all pairs of cases, and construct a dissimilarity
matrix.

2. Create a dendrogram by using conventional hierarchical clustering [3]] and the dis-
similarity matrix. Then perform cluster analysis.

Parameters for multiscale matching were empirically determined as follows: starting
scale =0.5, scale interval = 0,5, number of scales = 100, weight for segment replacement
cost = 1.0. We used group average as a linkage criterion for hierarchical clustering. The
experiments were performed on a small PC cluster consisted of 8 DELL PowerEdge
1750 (Intel Xeon 2.4GHz 2way) workstations. It took about three minutes to make the
dissimilarity matrix for all cases.

Results on ALB-PLT Trajectories. Figure [4] shows the dendrogram generated from
the dataset on Type C without IFN cases. The dendrogram suggested splitting of the data
into two or three clusters; however, in order to carefully examine the data structure, we
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Table 1. Cluster constitutions of ALB-PLT tra-
jectories, stratified by fibrotic stages. Small
- clusters of N < 2 were omitted.

5.41

4,08

- Cluster # of Cases / Fibrotic stage Total
17 clusters solution FOFI F2 F3 F4

2 _01 c17 l
5 0 1 0 3 4
= 7 3 2 2 9 16
“r 9 6 2 0 0 8
- 11 7 0 0 0 7
= b 14 2 1 0 0 3
15 17 2 7 1 27
Fig.4. Dendrogram for ALB-PLT tra- 16 1 0 1 0 2
jectories in Type C without IFN dataset 17 20 2 1 0 23

avoided excessive merge of clusters and determined to split it into 17 clusters where
dissimilarity increased relatively largely at early stage. For each of the 8 clusters that
contained > 2 cases, we classified cases according to the fibrotic stage. Table [Tl shows
the summary. The leftmost column shows cluster number. The next column shows the
number of cases whose fibrotic stages were FO or F1. The subsequent three columns
show the number of F2, F3, and F4 cases respectively. The rightmost column shows the
total number of cases in each cluster.

From Table[T] it could be recognized that the clusters can be globally classified into
one of the two categories: one containing progressed cases of liver fibrosis (clusters
5 and 7) and another containing un-progressed cases (clusters 9, 11, 14, 15, 16 and
17). This can be confirmed from the dendrogram in Figure @] where these two types of
clusters appeared at the second devision from the root. This implied that the difference
about ALB and PLT might be related to the fibrotic stages.

Cluster 7: N=16 (3/2/2/9)
Cluster 5: N=4 (0/1/0/3) T pei 2 gz
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Fig. 5. Trajectories in Cluster 5 Fig. 6. Trajectories in Cluster 7
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In order to recognize the detailed characteristics of 8 clusters, we observed the fea-
ture of grouped trajectories. Figures show the examples of grouped ALB-PLT tra-
jectories. Each quadrate region contains a trajectory of ALB-PLT values for a patient.
If the number of cases in a cluster was larger than 16, the first 16 cases w.r.t. ID number
were selected for visualization. The bottom part of Figure 3 provides the legend. The
horizontal axis represents ALB value, and the vertical axis represents PLT value. Lower
end of the normal range (ALB:3.9¢g/dl, PLT:120 x 103 /ul) and Upper end of the normal
range (ALB:5.0g/dl, PLT:350 x 103 /ul) were marked with blue and red short lines on
each axis respectively. Time phase on each trajectory was represented by color phase:
red represents the start of examination, and it changes toward blue as time proceeds.

Figure [3] shows cases grouped into cluster 5 which contained remarkably many F4
cases (3/4). The skewed trajectory of ALT and PLT clearly demonstrated that both val-
ues decreased from the normal range to the lower range as time proceeded, due to the
dysfunction of the liver. Cluster 7, shown in Figure [6] also contained similarly large
number of progressed cases (F4:9/16, F3:2/16) and exhibited the similar characteris-
tics, though it was relatively weaker than in cluster 5.

On the contrary, clusters that contained many un-progressed cases exhibited different
characteristics. Figure[7] shows the trajectories grouped into cluster 17, where the num-
ber of FO/F1 cases was large (20/23). Most of the trajectories moved within the normal
range, and no clear feature about time-direction dependency was observed. Figure
(top) shows the trajectories in cluster 11, where all of 7 cases were FO/F1. They moved
within the normal range, but the PLT range was higher than in cluster 17.

Figure [8] (bottom) shows the trajectories in cluster 14, where trajectories exhibited
skewed shapes similarly to cluster 5. But this cluster consisted of FO/F1 and F2 cases,
whereas cluster 5 contained mainly progressed cases. The reason why these cases were
separated into different clusters should be investigated further, but it seemed that the
difference of progress speed of liver fibrosis, represented as a velocity term, might be a
candidate cause.

Cluster 17: N=23 (20/2/1/0) Cluster 11: N=7 (7/0/0/0/)
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Fig.7. Trajectories in Cluster 17 Fig. 8. Trajectories in Cluster 11 and 14
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Table 2. Cluster constitutions of CHE-PLT tra-
jectories, stratified by fibrotic stages. Small
L clusters of N < 2 were omitted.
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Results on CHE-PLT Trajectories. Figure [0 shows the dendrogram generated from
CHE-PLT trajectories of 99 Type C without IFN cases. Similarly to the case of
ALB-PLT trajectories, we split the data into 15 clusters where dissimilarity increased
largely at early stage. TableRlprovides cluster constitution stratified by fibrotic stage. In
Table 2l we could observe a clear feature about the distribution of fibrotic stages over
clusters. Clusters such as 3, 4, 6, 7 and 8 contained relatively large number of F3/F4
cases, whereas clusters such as 9, 11, 12, 13, 14, 15 contained no F3/F4 cases. These
two types of clusters were divided at the second branch on the dendrogram; therefore
it implied that, with respect to the similarity of trajectories, the data can be globally
split into two categories, one contains the progressed cases and another contained un-
progressed cases.

Now let us examine the features of trajectories grouped into each cluster. Figure [TQ]
shows CHE-PLT trajectories grouped into cluster 3. The bottom part of the figure
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Table 3. Cluster constitutions of ALB-CHE
trajectories, stratified by fibrotic stages. Small
clusters of N < 2 were omitted.
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provides the legend. The horizontal axis corresponds to CHE, and the vertical axis cor-
responds to PLT. This cluster contained four cases: one F3 and three F4. The trajectories
settled around the lower bounds of the normal range for PLT (120 x 103 /ul), and below
the lower bounds of CHE (180 IU/l), with global direction toward lower values. This
meant that, in these cases, CHE deviated from normal range earlier than PLT.

Figure [[1] shows trajectories grouped into cluster 4, which contained nine F3/F4
cases and three other cases. Trajectories in this cluster exhibited interesting character-
istics. First, they had very clear descending shapes; in contrast to trajectories in other
clusters in which trajectories changed directions frequently and largely, they moved
toward the left corner with little directional changes. Second, most of the trajectories
settled below the normal bound of PLT whereas their CHE values ranged within normal
range at early phase. This meant that, in these cases, CHE deviated from normal range
later than PLT.
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Figure [12] shows trajectories grouped into cluster 6, which contained three F3/F4
cases and three other cases. Trajectories in this cluster exhibited descending shapes
similarly to the cases in cluster 4. The average levels of PLT were higher than those in
cluster 4, and did not largely deviated from the normal range. CHE remained within the
normal range for most of the observations.

Figure 13| shows trajectories grouped into cluster 15, which contained twelve FO/F1
cases and no other cases. In contrast to the high stage cases mentioned above, trajec-
tories settled within the normal ranges for both CHE and PLT and did not exhibit any
remarkable features about their directions.

These results suggested the followings about the CHE-PLT trajectories on type C
without IFN cases used in this experiment: (1) They could be globally divided into two
categories, one containing high-stage cases and another containing low-stage cases,
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(2) trajectories in some high-stage clusters exhibited very clear descending shapes. (3)
in a group containing descending trajectories, PLT deviated from normal range faster
than CHE, however, in another group containing descending trajectories, PLT deviated
from normal range later than CHE.

Results on ALB-CHE Trajectories. Figure[[4]shows the dendrogram generated from
the dataset on Type C without IFN cases. The dendrogram suggested splitting of the data
into two or three clusters; however, in order to carefully examine the data structure, we
avoided excessive merge of clusters and determined to split it into 15 clusters where
dissimilarity increased relatively largely at early stage. For each of the 8 clusters that
contained > 2 cases, we classified cases according to the fibrotic stage. Table [Tl shows
the summary. The leftmost column shows cluster number. The next column shows the
number of cases whose fibrotic stages were FO or F1. The subsequent three columns
show the number of F2, F3, and F4 cases respectively. The rightmost column shows the
total number of cases in each cluster.

From Table[3] it could be recognized that the clusters can be globally classified into
one of the two categories: one containing progressed cases of liver fibrosis (clusters 2,
4,5, 6and 7) and another containing un-progressed cases (clusters 8, 9, 11, 13, 14 and
15). This can be confirmed from the dendrogram in Figure[[4] where these two types of
clusters appeared at the second devision from the root. This implied that the difference
about ALB and PLT might be related to the fibrotic stages.

In order to recognize the detailed characteristics of 8 clusters, we observed the fea-
ture of grouped trajectories. Figures BHS] show the examples of grouped ALB-PLT tra-
jectories. Each quadrate region contains a trajectory of ALB-PLT values for a patient.
If the number of cases in a cluster was larger than 16, the first 16 cases w.r.t. ID num-
ber were selected for visualization. The bottom part of Figure [3 provides the legend.
The horizontal axis represents ALB value, and the vertical axis represents CHE value.
Time phase on each trajectory was represented by color phase: red represents the start
of examination, and it changes toward blue as time proceeds.



40 S. Hirano and S. Tsumoto

Figure [L3] and [16] shows cases grouped into cluster 4 and 6 which contained only
F4 cases (3 and 4). The skewed trajectory of ALT and CHE clearly demonstrated that
both values decreased from the normal range to the lower range as time proceeded, due
to the dysfunction of the liver. Cluster 7, shown in Figure [I’7] also contained similarly
large number of progressed cases (F1: 3, F2: 1, F3: 2, F4: 5) and exhibited the similar
characteristics, though it was relatively weaker than in cluster 4 and 6.

On the contrary, clusters that contained many un-progressed cases exhibited different
characteristics. Figure |18 and [19] show the trajectories grouped into cluster 11, where
the number of FO/F1 cases was large (31/40). Most of the trajectories moved within
the normal range, but some decreasing cases were included in this cluster, and no clear
feature about time-direction dependency was observed. Figure20lshows the trajectories
in cluster 15, where 19 of 22 cases were FO/F1 and the sequences moved within the
normal range.

In summary, the degree of covariance between ALB and CHE is higher than those
between ALB and PLT or CHE and PLT. Samples are better split into F4-dominant
cases and FO/F1-dominant cases.

4 Discussion

TableMlcompares the characteristics of clustering results. As shown in the table, it seems
that a combination of ALB and CHE generates a slightly better results than other pairs
with respect to the degree of seperation of fibrotic stages.

Table Blshows the contingency table between CHE-PLT and ALB-PLT whose exam-
ples belong to Cluster No.7 in ALB-CHE. Compared with the results in Table [2] and
Table[Il these cases covers impure clusters in CHE-PLT and ALB-PLT. This observa-
tion shows that this cluster should be carefully examined by additional information,
since the cluster includes several FO/F1 cases whose PLT is decreasing.

Table 4. Comparison of Clustering Results

Pair  #Clusters # Examples Most Impurity Clusters
>1 # F1 F2 F3 F4

ALB-PLT 17 8 16 3 2 2 9
CHE-PLT 15 11 135 2 3 3
ALB-CHE 15 11 1131 2 5

Table 5. Contingency Table of Cluster No.7 in ALB-CHE

ALB-PLT
No.7 No.14 No.15 Total
CHE-PLT No.4 7 1 0 8
No.6 2 0 0 2
No.7 0 0 1 1
Total 9 1 1 11
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5 Conclusions

In this paper we propose a trajectory clustering method as multivariate temporal data
mining and shows its application to data on chronic hepatits. Our method consists of a
two-stage approach. Firstly, it compares two trajectories based on their structural simi-
larity and determines the best correspondence of partial trajectories. Next, it calculates
the value-based dissimilarity for the all pairs of matched segments and outputs the total
sum as dissimilarity of the two trajectories.

Clustering experiments on the chronic hepatitis dataset yielded several interesting
results. First, the clusters constructed with respect to the similarity of trajectories well
matched with the distribution of fibrotic stages, especially with the distribution of high-
stage cases and low-stage cases, for ALB-PLT, CHE-PLT and ALB-CHE trajectories.
Among three combinations, ALB-CHE shows the highest degree of covariance, which
means that CHE can be used to evaluate the trends of ALB.

Our next step is to extend bivariate trajectory analysis into multivariate one. From
the viewpoint of medical application, our challenging issue will be to find a variable
whose chronological trend is fitted to PLT.
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Abstract. A clustering method is presented which can be applied to semanti-
cally annotated resources in the context of ontological knowledge bases. This
method can be used to discover emerging groupings of resources expressed in the
standard ontology languages. The method exploits a language-independent semi-
distance measure over the space of resources, that is based on their semantics
w.r.t. a number of dimensions corresponding to a committee of discriminating
features represented by concept descriptions. A maximally discriminating group
of features can be constructed through a feature construction method based on
genetic programming. The evolutionary clustering algorithm proposed is based
on the notion of medoids applied to relational representations. It is able to induce
a set of clusters by means of a fitness function based on a discernibility criterion.
An experimentation with some ontologies proves the feasibility of our method.

1 Introduction

In the perspective of the Semantic Web [2] knowledge bases will contain rich data and
meta-data described with complex representations. This requires re-thinking the cur-
rent data mining approaches to cope with the challenge of the new representation and
semantics. In this work, unsupervised learning is tackled in the context of the standard
concept languages used for representing ontologies which are based on Description
Logics (henceforth DLs) [1]]. In particular, we focus on the problem of conceptual clus-
tering for semantically annotated resources.

The benefits of clustering in the context of semantically annotated knowledge bases
are manifold. Clustering enables the definition of new emerging categories (concept
formation) on the grounds of the primitive concepts asserted in a knowledge base [9];
supervised methods can exploit these clusters to induce new concept definitions or to
refining existing ones ontology evolution; intensionally defined groupings may speed-
up the task of discovery and search in general.

Essentially, many existing clustering methods are based on the application of simi-
larity (or density) measures defined over a fixed set of attributes of the domain objects.
Classes of objects are taken as collections that exhibit low interclass similarity (density)
and high intraclass similarity (density). Thus, clustering methods have aimed at defining
groups of objects through conjunctive descriptions based on selected attributes [25]].

Often these methods cannot into account any form of prior knowledge at a concep-
tual level encoding some semantic relationships. This hinders the interpretation of the
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outcomes of these methods which is crucial in the Semantic Web perspective in which
the expressiveness of the language adopted for describing objects and clusters is ex-
tremely important. Specific logic-based approaches, intended for terminological repre-
sentations [1]], have have been proposed as language-dependent methods [[16,[9]. These
methods have been criticized for suffering from noise in the data. This motivates our in-
vestigation on similarity-based clustering approaches which can be more noise-tolerant,
and as language-independent as possible. Specifically we propose a multi-relational ex-
tension of effective clustering techniques intended for grouping similar resources w.r.t.
a semantic dissimilarity measure, which is tailored for the standard representations of
Semantic Web context.

From a technical viewpoint, adapting existing algorithms to work on complex rep-
resentations, requires semantic measures that are suitable for such concept languages.
Recently, dissimilarity measures for specific DLs have been proposed [3]. Although
they turned out to be quite effective for the inductive tasks, they were still partly based
on structural criteria which makes them fail to fully capture the underlying semantics
and hardly scale to any standard ontology language. As pointed out in a seminal paper
on similarity measures for DLs [4]], most of the existing measures focus on the simi-
larity of atomic concepts within hierarchies or simple ontologies. Moreover, they have
been conceived for assessing concept similarity, whereas, for other tasks, a notion of
similarity between individuals is required.

Therefore, we have devised a family of dissimilarity measures for semantically an-
notated resources, which can overcome the mentioned limitations [8]. Following the
criterion of semantic discernibility of individuals, these measures are suitable for a
wide range of concept languages since they are merely based on the discernibility of
the input individuals with respect to a fixed committee of features represented by con-
cept definitions. As such the new measures are not absolute, yet they depend on the
knowledge base they are applied to. Thus, also the choice of the optimal feature sets
deserves a preliminary feature construction phase, which may be performed by means
of a randomized search procedure based on genetic programming, whose operators are
borrowed from recent works on ontology evolution [13].

The clustering algorithm that we propose adopts an evolutionary learning approach
for adapting classic distance-based clustering approaches, such as the K-MEANS [14].
In our setting, instead of the notion of centroid that characterizes algorithms originally
developed for numeric or ordinal features, we recur to the notion of medoids [13] as
central individuals in a cluster. The clustering problem is solved by considering popula-
tions made up of strings of medoids with different lengths. The medoids are computed
according to the semantic measure induced with the methodology introduced above.
On each generation, the strings in the current population are evolved by mutation and
cross-over operators, which are also able to change the number of medoids. Thus, this
algorithm is also able to autonomously suggest a promising number of clusters.

The paper is organized as follows. Sect. [2] presents the basics of the representation
and the similarity measure adopted in the clustering algorithm. This algorithm is illus-
trated and discussed in Sect. 3l Related methods and distance measures are recalled in
Sect.[ then an experimental session applying the method on real ontologies is reported
in Sect.[Sl Conclusions and extensions are finally examined in Sect.
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2 Semantic Distance Measures

One of the advantages of our method is that it does not rely on a particular language for
semantic annotations. Hence, in the following, we assume that resources, concepts and
their relationship may be defined in terms of a generic ontology language that may be
mapped to some DL language with the standard open-world semantics (see the hand-
book []] for a thorough reference).

In this context, a knowledge base K = (T, A) is made up of a TBox 7 and an ABox
A. T is a set of concept definitions. A contains assertions (ground facts) concerning
individuals. The set of the individuals occurring in A will be denoted with Ind(.A).
The unique names assumption can be made for such individuals: each is assumed to be
identified by its own URI.

As regards the inference services, like all other instance-based methods, our proce-
dure may require performing instance-checking, which amounts to determining whether
an individual, say a, belongs to a concept extension, i.e. whether C'(a) holds for a cer-
tain concept C.

2.1 A Semantic Semi-distance for Individuals

Moreover, for our purposes, we need a function for measuring the similarity of indi-
viduals rather than concepts. It can be observed that individuals do not have a syntactic
structure that can be compared. This has led to lifting them to the concept description
level before comparing them (recurring to the approximation of the most specific con-
cept of an individual w.r.t. the ABox).

We have developed new measures whose definition totally depends on semantic as-
pects of the individuals in the knowledge base [8]]. On a semantic level, similar individ-
uals should behave similarly with respect to the same concepts. We introduce a novel
measure for assessing the similarity of individuals in a knowledge base, which is based
on the idea of comparing their semantics along a number of dimensions represented
by a committee of concept descriptions. Following the ideas borrowed from ILP
and multi-dimensional scaling, we propose the definition of totally semantic distance
measures for individuals in the context of a knowledge base.

The rationale of the new measure is to compare them on the grounds of their behavior
w.r.t. a given set of hypotheses, that is a collection of concept descriptions, say F =
{Fy, Fs, ..., F,}, which stands as a group of discriminating features expressed in the
language taken into account.

In its simple formulation, a family of distance functions for individuals inspired to
Minkowski’s distances can be defined as follows:

Definition 2.1 (dissimilarity measures). Let L = (7, A) be a knowledge base. Given
a set of concept descriptions F = {Fy, Fy, ..., Fy,}, a family of functions

d : Ind(A) x Ind(A) — [0, 1]

defined as follows:
Va,b € Ind(A)

1/p
dF(a b) <Z | mi(a) — mi(b) |p>
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where p > 0 and Vi € {1, ..., m} the projection function 7; is defined by:
Ve € Ind(A)
1 K = Fi(c)
7Ti(C) = 0 K ): ﬁFi(C) (1)
1/2 otherwise

The case of 7;(¢) = 1/2 corresponds to the case when a reasoner cannot give the
truth value for a certain membership query. This is due to the Open World Assumption
(OWA) normally made in the descriptive semantics [[1]].

It can be proved that these functions have almost all standard properties of dis-
tances [8]]:

Proposition 2.1 (semi-distance). For a fixed feature set F and p > 0 the function dg is
a semi-distance.

It cannot be proved that dy,(a,b) = 0 iff @ = b. This is the case of indiscernible indi-
viduals with respect to the given set of hypotheses F.

Compared to other proposed distance (or dissimilarity) measures [4]], the presented
function does not depend on the constructors of a specific language, rather it requires
only retrieval or instance-checking service used for deciding whether an individual is
asserted in the knowledge base to belong to a concept extension (or, alternatively, if this
could be derived as a logical consequence).

Note that the 7; functions (Vi = 1, ..., m) for the training instances, that contribute
to determine the measure with respect to new ones, can be computed in advance thus
determining a speed-up in the actual computation of the measure. This is very important
for the measure integration in algorithms which massively use this distance, such as all
instance-based methods.

The underlying idea for the measure is that similar individuals should exhibit the
same behavior w.r.t. the concepts in F. Here, we make the assumption that the feature-
set F represents a sufficient number of (possibly redundant) features that are able to
discriminate really different individuals.

2.2 Committee Optimization

The choice of the concepts to be included in the committee — feature selection — may be
crucial. Experimentally, it was observed that good results could be obtained by using the
very set of both primitive and defined concepts found in the ontology. However, some
ontologies define very large sets of concepts which make the task unfeasible. Thus, we
have devised a specific optimization algorithms founded in genetic programming which
are able to find optimal choices of discriminating concept committees.

Various optimizations of the measures can be foreseen as concerns its definition.
Among the possible sets of features we will prefer those that are able to discriminate
the individuals in the ABox.

Since the function is very dependent on the concepts included in the committee of
features F, two immediate heuristics can be derived:

— Limit the number of concepts of the committee, including especially those that are
endowed with a real discriminating power;
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— Find sets of discriminating features, by allowing also their composition employing
the specific constructors made available by the representation language of choice.

Both these objectives can be accomplished by means of randomized optimization tech-
niques especially when knowledge bases with large sets of individuals are available.
Namely, part of the entire data can be drawn in order to learn optimal F sets, in advance
with respect to the successive usage for all other purposes.

Specifically, we experimented the usage of genetic programming for constructing
optimal sets of features. Thus we devised the algorithm depicted in Fig. [Tl Essentially
the algorithm searches the space of all possible feature committees starting from an ini-
tial guess (determined by MAKEINITIALFS(K)) based on the concepts (both primitive
and defined) currently referenced in the knowledge base .

The outer loop gradually augments the cardinality of the candidate committees. It is
repeated until the algorithm realizes that employing larger feature committees would

FeatureSet OPTIMIZEFS(IC, maxGenerations, minFitness)
input:
KC: current knowledge base
maxGenerations: maximal number of generations
minFitness: minimal fitness value
output:
FeatureSet: FeatureSet
begin
currentBestFitness := 0; formerBestFitness := 0;
currentFSs := MAKEINITIALFS(K); formerFSs := currentFSs;
repeat
fitnesslmproved := false;
generationNumber :=0;
currentBestFitness := BESTFITNESS(currentFSs);
while (currentBestFitness < minFitness) or (generationNumber < maxGenerations)
begin
offsprings := GENERATEOFFSPRINGS(currentFSs);
currentFSs := SELECTFROMPOPULATION(offsprings);
currentBestFitness := BESTFITNESS(currentFSs);
++generationNumber;
end
if (currentBestFitness > formerBestFitness) and (currentBestFitness < minFitness) then
begin
formerFSs := currentFSs;
formerBestFitness := currentBestFitness;
currentFSs := ENLARGEFS(currentFSs);
end
else fitnessimproved := true;
end
until not fitnessimproved;
return BEST(formerFSs);
end

Fig. 1. Feature set optimization algorithm based on Genetic Programming
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not yield a better fitness value with respect to the best fitness recorded in the previous
iteration (with fewer features).

The inner loop is repeated for a number of generations until a stop criterion is met,
based on the maximal value of generations maxGenerations or, alternatively, when an
minimal threshold for the fitness value minFitness is reached by some feature set in the
population, which can be returned.

As regards the BESTFITNESS() routine, it computes the best feature committee in
a vector in terms of their discernibility [12]]. For instance, given the whole set of
individuals IS = Ind(.A) (or just a sample to be used to induce an optimal measure) the
fitness function may be:

[F|
| mi(a) — mi(b) |
DISCERNIBILITY (F) ‘2 >y \F\

(a,b)€IS? i=1

As concerns finding candidate sets of concepts to replace the current committee
(GENERATEOFFSPRINGS() routine), the function was implemented by recurring to sim-
ple transformations of a feature set:

— Choose F € currentFSs;

— Randomly select F; € F;
e replace F; with F/ € RANDOMMUTATION(F;) randomly constructed, or
e replace F; with one of its refinements F] € REF(F;)

Refinement of concept description may be language specific. E.g. for the case of ALC
logic, refinement operators have been proposed in [13].

This is iterated till a suitable number of offsprings is generated. Then these offspring
feature sets are evaluated and the best ones are included in the new version of the cur-
rentFSs array; the minimal fitness value for these feature sets is also computed. As
mentioned, when the while-loop is over the current best fitness is compared with the
best one computed for the former feature set length; if an improvement is detected then
the outer repeat-loop is continued, otherwise (one of) the former best feature set(s) is
selected for being returned as the result of the algorithm.

Further methods for performing feature construction by means of randomized ap-
proaches are discussed in [8], where we propose a different approach based on simu-
lated annealing in a DL framework, employing similar refinement operators.

3 Evolutionary Clustering Around Medoids

The conceptual clustering procedure consists of two phases: one that detects the clusters
in the data and the other that finds an intensional definition for the groups of individuals
detected in the former phase.

The first clustering phase implements a genetic programming learning scheme,
where the designed representation for the competing genes is made up of strings (lists)
of individuals of different lengths, where each individual stands as prototypical for one
cluster. Thus, each cluster will be represented by its prototype recurring to the notion
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of medoid [13}[14] on a categorical feature-space w.r.t. the distance measure previously
defined. Namely, the medoid of a group of individuals is the individual that has the
lowest distance w.r.t. the others. Formally. given a cluster C' = {ai,az,...,a,}, the
medoid is defined:

n
m = medoid(C) := argminz d(a,a;)
acC j=1
The algorithm performs a search in the space of possible clusterings of the individuals
optimizing a fitness measure maximizing discernibility of the individuals of the differ-
ent clusters (inter-cluster separation) and the intra-cluster similarity measured in terms
of our metric.
The second phase is more language dependent. The various cluster can be considered
as training examples for a supervised algorithm aimed at finding an intensional DL
definition for one cluster against the counterexamples, represented by individuals in
different clusters [16) [9].

3.1 The Clustering Algorithm

The proposed clustering algorithm can be considered as an extension of methods based
on genetic programming, where the notion of cluster prototypical instance of cen-
troid, typical of the numeric feature-vector data representations, is replaced by that of
medoid [13]] as in (Partition Around Medoids or PAM): each cluster is represented by
one of the individuals in the cluster, the medoid, i.e., in our case, the one with the low-
est average distance w.r.t. all the others individuals in the cluster. In the algorithm, a
genome will be represented by a list of medoids G = {my, ..., my}. Per each genera-
tion those that are considered as best w.r.t. a fitness function are selected for passing to
the next generation. Note that the algorithm does not prescribe a fixed length of these
lists (as, for instance in K-MEANS and its extensions [14]), hence it should be able to
detect an optimal number of clusters for the data at hand.

Fig. Rlreports a sketch of the clustering algorithm. After the call to the initialization
procedure INITIALIZE() returning the randomly generated initial population of medoid
strings (currentPopulation) in a number of poplLength, it essentially consists of the
typical generation loop of genetic programming.

At each iteration this computes the new offsprings of current best clusterings repre-
sented by currentPopulation. This is performed by suitable genetic operators explained
in the following. The fitnessVector recording the quality of the various offsprings (i.e.
clusterings) is then updated, which is used to select the best offsprings that survive,
passing to the next generation.

The quality of a genome G = {my, ..., my} is evaluated by distributing all individ-
uals among the clusters ideally formed around the medoids listed in it. Let C; be the
cluster around medoid m;, ¢ = 1, ..., k. Then, the measure is computed as follows:

k
UNFITNESS(G) := Vk + 1 Z Z dp(@, m;)

i=1 zeC;
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medoidVector ECM(maxGenerations, minGap)

input:
maxGenerations: max number of iterations;
minGap: minimal gap for stopping the evolution;

output:
medoidVector: list of medoids

begin

INITIALIZE(currentPopulation,poplLength);

while (generation < maxGenerations) and (gap > minGap)
begin
offsprings := GENERATEOFFSPRINGS(currentPopulation);
fitnessVector := COMPUTEFITNESS(offsprings);
currentPopulation := SELECT(offsprings,fitnessVector);
gap := (UNFITNESS[popLength]—UNFITNESS[1]);
generation++;
end

return currentPopulation[0]; // best genome

end

Fig. 2. ECM: the EVOLUTIONARY CLUSTERING AROUND MEDOIDS algorithm

This measure is to be minimized. The factor v/k + 1 is introduced in order to penalize
those clusterings made up of too many clusters that could enforce the minimization in
this way (e.g. by proliferating singletons). This can be considered a measure of inco-
herence within the various clusters, while the fitness function used in the metric opti-
mization procedure measures discernibility as the spread of the various individuals in
the derived space independently of their classification.

The loop condition is controlled by two factors the maximal number of generation
(the maxGenerations parameter) and the difference (gap) between the fitness of best and
of the worst selected genomes in currentPopulation (which is supposed to be sorted in
ascending order, 1 through poplLength). Thus another stopping criterion is met when
this gap becomes less than the minimal gap minGap passed as a parameter to the algo-
rithm, meaning that the algorithm has reached a (local) minimum.

It remains to specify the nature of the GENERATEOFFSPRINGS procedure function
and the number of such offsprings, which may as well be another parameter of the ECM
algorithm. Three mutation and one crossover operators are implemented:

DELETION(G) drop a randomly selected medoid:
G:=G\{m},meG

INSERTION(G) select m € Ind(.A) \ G that is added to G:
G:=GU{m}

REPLACEMENTWITHNEIGHBOR((G) randomly select m € G and replace it with m’ €
Ind(A) \ G such that Vm" € Ind(A) \ G d(m,m’) < d(m,m"):
G = (G\{m}) U{m'}

CROSSOVER(G 4,G'g) select subsets Sy C G4 and Sp C Gp and exchange them
between the genomes:
Gy = (GA \ SA) USgpand Gg := (GB \ SB) USa
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A (10+60) selection strategy has been implemented, indicating, resp., the number of
parents selected for survival and the number of their offsprings.

3.2 The Supervised Learning Phase

Each cluster may be labeled with a new DL concept definition which characterizes the
individuals in the given cluster while discriminating those in other clusters [9]. The pro-
cess of labeling clusters with concepts can be regarded as solving a number of super-
vised learning problems in the specific multi-relational representation targeted in our
setting. As such, it deserves specific solutions that are suitable for the DL languages
employed.

A straightforward solution, for DLs that allow for the computation of (an approxi-
mation of) the most specific concept (msc) and least common subsumer (lcs) (such
as ALC) is depicted in Fig.

However, such a solution is likely to produce overly specific definitions which may
lack of predictiveness w.r.t. future individuals. Hence, better generalizing operators
would be needed. Alternatively, algorithms for learning concept descriptions expressed
in DLs may be employed [[13]]. Further refinement operators for the ALC DL have been
proposed [18] to be employed in an algorithm performing a heuristic search in the re-
finement tree guided by a fitness function.

3.3 Discussion

For an analysis of the algorithm, the parameters of the methods based on genetic pro-
gramming have to be considered, namely maximum number of iterations, number of
offsprings, number of genomes that are selected for the next generation. However, it
should be also pointed out that computing the fitness function requires some inference
service (instance-checking) from a reasoner whose complexity may dominate the over-
all complexity of the process. This depends on the DL language of choice and also on
the structure of the concepts descriptions handled, as investigated in the specific area
(see [}, Ch. 3).

The representation of centers by means of medoids has two advantages. First, it
presents no limitations on attributes types, and, second, the choice of medoids is dictated

input Clustering = {C; | j = 1,..., k}: set of clusters
K = (7T, A): knowledge base;
output Descriptions: set of DL concept descriptions
Descriptions := (J;
for each C; € Clustering:
for each individual a; € C:
do compute M; := msc(a;) w.r.t. A;
let MSCs; := {M; | a; € C;};
Descriptions := Descriptions U{lcs(MSCs;)};
return Descriptions;

Fig. 3. A basic concept induction algorithm from clusterings
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by the location of a predominant fraction of points inside a cluster and, therefore, it
is lesser sensitive to the presence of outliers. Density based methods could be also
investigated, yet this may be difficult when handling complex data. In K-MEANS case
a cluster is represented by its centroid, which is a mean (usually weighted average) of
points within a cluster. This works conveniently only with numerical attributes and can
be negatively affected by a single outlier.

Together with the density based clustering methods, also the algorithms based on
medoids have several favorable properties w.r.t. other methods based on (dis)similarity.
Since it performs clustering with respect to any specified metric, it allows for a flex-
ible definition of the similarity function. This flexibility is particularly important in
biological applications where researchers may be interested, for example, in grouping
correlated or possibly also anti-correlated elements. Many clustering algorithms do not
allow for a flexible definition of similarity: mostly they are rather based on a distances
in Euclidean spaces. In addition, the algorithm has the advantage of identifying clusters
by the medoids which represent more robust representations of the cluster centers that
are less sensitive to outliers than other cluster profiles, such as the cluster centers of
K-MEANS. This robustness is particularly important in the common context that many
elements do not belong exactly to any cluster, which may be the case of the membership
in DL knowledge bases, which may be not ascertained given the OWA.

4 Related Work

The unsupervised learning procedure presented in this paper is mainly based on two
factors: the semantic dissimilarity measure and the clustering method. To the best of
our knowledge in the literature there are very few examples of similar clustering al-
gorithms working on complex representations that are suitable for knowledge bases of
semantically annotated resources. Thus, in this section, we briefly discuss sources of
inspiration for our procedure and some related approaches.

As previously mentioned, various attempts to define semantic similarity (or dissimi-
larity) measures for concept languages have been made, yet they have still a limited ap-
plicability to simple languages [4]] or they are not completely semantic depending also
on the structure of the descriptions [3]. OSS is another recent proposal for an asymmet-
ric similarity function for concepts within an ontology based on its structure. Very
few works deal with the comparison of individuals rather than concepts.

In the context of clausal logics, a metric was defined [21]] for the Herbrand interpreta-
tions of logic clauses as induced from a distance defined on the space of ground atoms.
This kind of measures may be employed to assess similarity in deductive databases. Al-
though it represents a form of fully semantic measure, different assumptions are made
with respect to those which are standard for knowledgeable bases in the SW perspective.
Therefore the transposition to the context of interest is not straightforward.

Our measure is mainly based on Minkowski’s measures [26] and on a method for
distance induction developed by Sebag in the context of machine learning, where
metric learning is developing as an important subfield. In this work it is shown that
the induced measure could be accurate when employed for classification tasks even
though set of features to be used were not the optimal ones (or they were redundant).
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Indeed, differently from our unsupervised learning approach, the original method learns
different versions of the same target concept, which are then employed in a voting
procedure similar to the Nearest Neighbor approach for determining the classification
of instances.

A source of inspiration was also rough sets theory [22] which aims at the formal defi-
nition of vague sets by means of their approximations determined by an indiscernibility
relationship. Hopefully, these methods developed in this context will help solving the
open points of our framework (see Sect.[f)) and suggest new ways to treat uncertainty.

Our algorithm adapts to the specific representations devised for the SW context a
combination of evolutionary clustering and the distance-based approaches (see [14]).
Specifically, in the methods derived from K-MEANS and K-MEDOIDS each cluster is
represented by one of its points.

Early versions of this approach are represented by further algorithms based on PAM
such as CLARA [15], and CLARANS [20]. They implement iterative optimization
methods that essentially cyclically relocate points between perspective clusters and re-
compute potential medoids. The leading principle for the process is the effect on an
objective function. The whole dataset is assigned to resulting medoids, the objective
function is computed, and the best system of medoids is retained. In CLARANS a
graph is considered whose nodes are sets of £ medoids and an edge connects two nodes
if they differ by one medoid. While CLARA compares very few neighbors (a fixed
small sample), CLARANS uses random search to generate neighbors by starting with
an arbitrary node and randomly checking maxneighbor neighbors. If a neighbor rep-
resents a better partition, the process continues with this new node. Otherwise a local
minimum is found, and the algorithm restarts until a certain number of local minima is
found. The best node (i.e. a set of medoids) is returned for the formation of a resulting
partition. Ester et al. [6] extended CLARANS to deal with very large spatial databases.

Our algorithm may be considered an extension of evolutionary clustering meth-
ods [11] which are also capable to determine a good estimate of the number of clus-
ters [10]. Besides, we adopted the idea of representing clusterings (genomes) as strings
of cluster centers transposed to the case of medoids for the categorical search
spaces of interest.

Other related recent approaches are represented by the UNC algorithm and its exten-
sion to the hierarchical clustering case H-UNC [[19]. Essentially, UNC solves a multi-
modal function optimization problem seeking dense areas in the feature space. It is also
able to determine their number. The algorithm is also demonstrated to be noise-tolerant
and robust w.r.t. the presence of outliers. However, the applicability is limited to simpler
representations w.r.t. those considered in this paper.

Further comparable clustering methods are those based on an indiscernibility rela-
tionship [12]. While in our method this idea is embedded in the semi-distance measure
(and the choice of the committee of concepts), these algorithms are based on an it-
erative refinement of an equivalence relationship which eventually induces clusters as
equivalence classes.

As mentioned in the introduction, the classic approaches to conceptual cluster-
ing [23] in complex (multi-relational) spaces are based on structure and logics. Kietz &
Morik proposed a method for efficient construction of knowledge bases for the BACK
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representation language [[16]. This method exploits the assertions concerning the roles
available in the knowledge base, in order to assess, in the corresponding relationship,
those subgroups of the domain and ranges which may be inductively deemed as dis-
joint. In the successive phase, supervised learning methods are used on the discovered
disjoint subgroups to construct new concepts that account for them. A similar approach
is followed in [9]], where the supervised phase is performed as an iterative refinement
step, exploiting suitable refinement operators for a different DL, namely ALC.

5 Experimental Evaluation

A comparative evaluation of the method is not possible yet, since to the best of our
knowledge, there is no similar algorithm which can cope with complex DL languages
such as those indicated in the following Table [l The only comparable (logical) ap-
proaches to clustering DL KBs are suitable for limited languages only (e.g. see [[16},[9]).

The clustering procedure was validated through some standard internal indices
[14.13]. As pointed out in several surveys on clustering, it is better to use a different cri-
terion for the clustering algorithm (e.g. for choosing the candidate cluster to bisection)
and for assessing the quality of its resulting clusters.

To this purpose, we propose a generalization of Dunn’s index [3] to deal with
medoids. Let P = {C4,...,C)} be a possible clustering of n individuals in % clus-
ters. The index can be defined:

Vep(P) := min { min { 9p(Ci; Cj) }

1<i<k | 1<<k | maxi<p<i {A,(Ch)}
i

where 4, is the Hausdorff distance for clusters derived from d,, (defined: 6,(C;,C;) =

max{d,(C;, C;),d,(Cj,C;)}, where d,(Cy, C;) = maxqec, {minyec, {dp(a,b)}})
while the cluster diameter measure A, is defined:

(h ‘C‘chmh

ceCy,

The other indices employed are more standard: the mean within-cluster square sum
error (WSS), a measure of cohesion, and the silhouette measure [13]].

Table 1. Ontologies employed in the experiments

ONTOLOGY DL #concepts #object prop. #data prop. #individuals
FSM  SOF(D) 20 10 7 37
S.-W.-M. ALCOF (D) 19 9 1 115
TRANSPORTATION ALC 44 7 0 250
NTN SHZIF(D) 47 27 8 676
FINANCIAL  ALCIF 60 16 0 1000
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Table 2. Results of the experiments: average value (std. deviation) and min—max value ranges

ONTOLOGY SILHOUETTE index DUNN’S index WSS index

FSM 1998 (£.005) 221 (£.003) 30.254 (+11.394)
.985—1.000 212—.222 14.344—41.724

S -W-M 1.000 (£.000) .333 (£.000) 11.971 (£11.394)
o 1.000—1.000 .333-.333 7.335—13.554
TRANSPORTATION .976 (£.000) .079 (£.000) 46.812 (45.944)
.976—.976 .079—-.079 39.584—57.225

NTN 1986 (£.007) .058 (£.003) 96.155 (424.992)
.974—.996 .056—.063 64.756—143.895

FINANCIAL 927 (£.034) .237 (£.000) 130.863 (£24.117)
.861—-.951 .237-.237 99.305—163.259

For the experiments, a number of different ontologies represented in OWL were se-
lected, namely: FSM, SURFACE-WATER-MODEL, TRANSPORTATION and NEWTES-
TAMENTNAMES from the Protégé libraryEL the FINANCIAL ontologyﬁ employed as a
testbed for the PELLET reasoner. Table [Tl summarizes important details concerning the
ontologies employed in the experimentation. A variable number of assertions per sin-
gle individual was available in the ontology. For each ontology, the experiments have
been repeated for 10 times. The PELLET 1.4 reasoner was employed to compute the
projections required for determining the distance between individuals. An overall ex-
perimentation (10 repetitions) on a single ontology took from a few minutes up to less
than one hour on a 2.5GhZ (512Mb RAM) Linux Machine.

The outcomes of the experiments are reported in Table[2l It is possible to note that the
the Silhouette measure is quite close its optimal value (1), thus providing an absolute
indication for the quality of the obtained clusterings. The variability is limited thus the
performance appears to be quite stable.

Dunn’s and WSS indices may be employed as a suggestion on whether to accept or
not the (number of) clusters computed by the algorithm. Namely, among the various
repetitions, those final clusterings whose values maximize these indices would have
to be preferred. The high variance observed for the WSS index (that it is not limited
within a range) has to be considered in proportion with its mean values. Besides, this
measure is very sensitive to the number of clusters produced by the method. Although
the algorithm converges to a stable number of clusters a difference of 1 may yield a
sensible variation of the WSS, also because medoids are considered as centers rather
than centroids.

6 Conclusions and Future Work

This work has presented a clustering for (multi-)relational representations which are
standard in the Semantic Web field. Namely, it can be used to discover interesting

'http://protege.stanford.edu/plugins/owl/owl-1library
*http://www.cs.put.poznan.pl/alawrynowicz/financial.owl
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groupings of semantically annotated resources in a wide range of concept languages.
The method exploits a novel dissimilarity measure, that is based on the resource se-
mantics w.r.t. a number of dimensions corresponding to a committee of features repre-
sented by a group of concept descriptions (discriminating features). The algorithm, is an
adaptation of clustering procedures employing medoids since complex representations
typical of the ontology in the Semantic Web are to be dealt with.

Better fitness functions may be investigated for both the evolutionary distance opti-
mization procedure and the clustering one. In particular, feature selection for inducing
a good distance measure deserves an independent investigation in order to make the
choice efficient despite the large extent of the search space. As mentioned, we are inves-
tigating other stochastic procedures based on local search [8] and also extensions which
can treat less uniformly the cases of uncertainty, e.g. evidence combination methods re-
lated to rough sets theory.

We are also devising extensions that are able to produce hierarchical clusterings [7]
which would suggest new (non necessarily disjoint) concepts. Instead of repeatedly
bisecting the target cluster (as in BISECTING K-MEANS [[14]) the algorithm would au-
tonomously find an optimal number for the split at each level.
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Abstract. The problem considered in this paper is how to select fea-
tures that are useful in classifying perceptual objects that are qualita-
tively but not necessarily spatially near each other. The term qualitatively
near is used here to mean closeness of descriptions or distinctive char-
acteristics of objects. The solution to this problem is inspired by the
work of Zdzistaw Pawlak during the early 1980s on the classification of
objects. In working toward a solution of the problem of the classifica-
tion of perceptual objects, this article introduces a near set approach to
feature selection. Consideration of the nearness of objects has recently
led to the introduction of what are known as near sets, an optimist’s
view of the approximation of sets of objects that are more or less near
each other. Near set theory started with the introduction of collections of
partitions (families of neighbourhoods) that provide a basis for a feature
selection method based on the information content of the partitions of a
set of sample objects. A byproduct of the proposed approach is a feature
filtering method that eliminates features that are less useful in the clas-
sification of objects. This contribution of this article is the introduction
of a near set approach to feature selection.

Keywords: Description, entropy, feature selection, filter, information
content, nearness, near set, perception, probe function.

1 Introduction

The problem considered in this paper is how to select the features of objects
that are useful in classifying perceptual objects that are qualitatively but not
necessarily spatially near each other. The term qualitatively near is used here
to mean closeness of descriptions or distinctive characteristics of objects. The
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solution to this problem is inspired by the work of Zdzistaw Pawlak during the
early 1980s on the classification of objects [16], elaborated in [I7I21], and a view
of perception that is on the level of classes instead of individual objects [14].
In working toward a solution of the problem of the classification of perceptual
objects, this article introduces a nearness description principle. An object de-
scription is defined by means of a vector of probe function values associated
with an object (see, e.g., [19]). Each probe function ¢; represents a feature of an
object of interest. Sample objects are near each other if, and only if the objects
have similar descriptions.

Ultimately, there is interest in selecting the probe functions [I5] that lead
to descriptions of objects that are minimally near each other. This is an essen-
tial idea in the near set approach [TOJI820/23] and differs markedly from the
minimum description length (MDL) proposed in 1983 by Jorma Rissanen [27].
MDL depends on minimizing the length of a message expressed as a (negative)
log-posterior distribution [9]. By contrast, NDP deals with a set X that is the
domain of a description used to identify similar objects. The term similar is used
here to denote the presence of objects that have descriptions that match each
other to some degree.

The near set approach leads to partitions of ensembles of sample objects
with measurable information content and an approach to feature selection. The
proposed feature selection method considers combinations of n probe functions
taken r at a time in searching for those combinations of probe functions that
lead to partitions of a set of objects that has the highest information content.
It is Shannon’s measure of the information content [12/30] of an outcome that
provides a basis for the proposed feature selection method. In this work, feature
selection results from a filtering method that eliminates those features that have
little chance to be useful in the analysis of sample data. The proposed approach
does not depend on the joint probability of finding a feature value for an input
vectors that belong to the same class as in []]. In addition, the proposed approach
to measuring the information content of families of neighbourhoods differs from
the rough set-based form of entropy in [29]. Unlike the dominance-relation rough
set approach [7], the near set approach does not depend on preferential ordering
of value sets of functions representing object features. The contribution of this
article is the introduction of a near set approach to feature selection.

This article has the following organization. A brief introduction to the nota-
tion and basic approach to object description is given in Sect.[2l A brief introduc-
tion to nearness approximation spaces is given in Sect.dl A nearness description
principle is introduced in Sect. Bl A near set-based feature selection method is
introduced in Sect.

2 Object Description

Objects are known by their descriptions. An object description is defined by
means of a tuple of function values ¢(x) associated with an object z € X
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Table 1. Description Symbols

Symbol Interpretation

Set of real numbers,
Set o Operceptual obJects
set of sample ObJGCtS
x 6 (9 sample object,
A set of functions representing object features,
B CF,
% O — RE object description,
I? descrlptlon length,
E) B where ¢; : O — R, probe function,

( ( )¢’2( )7¢3(x)77¢1(x)77¢11(x))

S tve NE <O

b
&(

3
&

(see (). The important thing to notice is the choice of functions ¢; € B used
to describe an object of interest.

Object Description: ¢(z) = (¢1(z), p2(x), ..., ¢i(2), ..., dr(x)). (1)

The intuition underlying a description ¢(x) is a recording of measurements
from sensors, where each sensor is modelled by a function ¢;. Assume that B C F
(see Table D)) is a given set of functions representing features of sample objects
X C O. Let ¢; € B, where ¢; : O — R. The value of ¢;(z) is a measure-
ment associated with a feature of an object x € X. The function ¢; is called a
probe [I5]. In combination, the functions representing object features provide a
basis for an object description ¢ : O — R, a vector containing measurements
(returned values) associated with each functional value ¢; (x) in (), where the
description length |¢p| = L

2.1 Sample Behaviour Description

By way of illustration, consider the description of the behaviour observable in
biological organisms. For example, a behaviour can be represented by a tuple

(s,a,p(s,a),r)

Table 2. Sample ethogram

zi s a p(s,a) r d
zo 0 1 0.1 0.75 1
z1 0 2 0.1 0.75 0
z2 1 2 0.05 0.1 0
zz3 1 3 0.056 0.1 1
z4a 0 1 0.03 0.75 1
zs 0 2 0.02 0.75 0
ze 1 2 0.01 09 1
z7 1 3 0.025 09 0
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where s, a, p(s,a),r denote organism functions representing state, action, action
preference in a state, and reward for an action, respectively. A reward r is ob-
served in state s and results from an action a performed in the previous state.
The preferred action a in state s is calculated using

p(s,a) — p(s,a) + 5(s, a),

where § is the actor’s learning rate and §(r, s) is used to evaluate the quality of
action a (see [24]). In combination, tuples of behaviour function values form the
following description of an object z relative to its observed behaviour:

Organism Behaviour: ¢(x) = (s(z),a(z),r(x), V(s(z))).

Table 2] exhibits a sample observed behaviours of an organism.

3 Nearness of Objects

Approximate, a [L. approzimat-us to draw near to.]
A. adj.
1. Very near, in position or in character;
closely situated; nearly resembling.
—Oxford English Dictionary, 1933.

Table 3. Set, Relation, Probe Function Symbols

Symbol Interpretation
~p Alz,2)| flz)= fg:r’) Vf € B}, indiscernibility relation,
[zl [z]e ={2’ € X | 2’ ~p z}, elementary granule (class),
O/ ~p O/ ~p={[z]y| = € O}, quotient set,
¢ Partition &g = O/ ~p,
Ap;  Agi = ¢i(z') — ¢i(x), probe function difference,

Sample objects X C O are near each other if, and only if the objects have
similar descriptions. Recall that each description defines a description of an
object (see Table[D]). Then let A¢; denote

Ap; = ¢i(a’) — ¢5(x),

where z,2" € O (see Table B]). The difference A¢ leads to a definition of the
indiscernibility relation ~p introduced by Zdzistaw Pawlak [16] (see Def. []).

! In a more general setting that includes data mining, ¢; would be defined to allow
for non-numerical values, i.e., let ¢, : X — V, where V is the value set for the
range of ¢; [26]. The more general definition of ¢; € F is also better in setting forth
the algebra and logic of near sets after the manner of the algebra and logic of rough
sets [B26]. Real-valued probe functions are used in object descriptions in this article
because we have science and engineering applications of near sets in mind.
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Definition 1. Indiscernibilty Relation
Let x,2’ € O,B C F.

~p={(z,2') € O x O| V¢; € B. Ap; =0},where i < description length |¢] .

Definition 2. Nearness Description Principle (NDP)

Let B C F be a set of functions representing features of objects z,z’ € O.
Objects x,2’ are minimally near each other if, and only if there exists ¢; €
B such that z ~ 4.y 2/, i.e., Ag; = 0.

In effect, objects x, 2’ are considered minimally near each other whenever there
is at least one probe function ¢; € B so that ¢;(x) = ¢;(z’). A probe function
can be thought of as a model for a sensor (see, e.9., [I5I21]). Then ¢; constitutes
a minimum description of the objects x, 2’ that makes it possible for us to assert
that z, 2’ are near each other. Ultimately, there is interest in identifying the
probe functions that lead to partitions with the highest information content. The
nearness description principle (NDP) differs markedly from minimum description
length (MDL) proposed by Jorma Rissanen [27]. MDL deals with a set X =
{z; | i=1,...} of possible message lengths required to transmit outputs data
models and a set © of possible probability models. By contrast, NDP deals with
a set X that is the domain of a description ¢ : X — R and the discovery of at
least one probe function ¢;(z) in a particular description ¢(x) used to identify
similar objects in X. The term similar is used here to denote the presence of
objects z, 2" € X and at least one ¢; in object description ¢, where x ~4, 2’. In
that case, objects x, 2’ are said to be similar. This leads to a feature selection
method, where one considers combinations of n probe functions r in searching
for those combinations of probe functions that lead to partitions with the highest
information content.

Observation 1. Near Objects in a Class

Let &g = O/ ~p denote a partition of O. Let [z]; € £z denote an equivalence
class. Assume z,2’ € [z],. From Table B and Def. [I, we know that for each
¢; € B, Agp; = 0. Hence, from Def. [2, =, 2’ are near objects.

Theorem 1. The objects in a class [z]; € {p are near objects.

Proof. The nearness of objects in a class in &g follows from Obs. [Il |

The basic idea in the near set approach to object recognition is to compare
object descriptions. Sets of objects X, X’ are considered near each other if the
sets contain objects with at least partial matching descriptions.

Definition 3. Near Sets [19]
Let X, X' C O, BC F.Set X is near X' if, and only if there exists z € X, 2’ €
X', ¢; € B such that z ~ 4.y 2.

Object recognition problems, especially in images [2/10], and the problem of the
nearness of objects have motivated the introduction of near sets (see,

e.g., [I8122]).
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4 Nearness Approximation Spaces

The original generalized approximation space (GAS) model [31] has recently
been extended as a result of recent work on nearness of objects (see, €.g.,

[TOUTRI2012212313233] ). A nearness approximation space (NAS) is a tuple
NAS = (07 f’ ~ B NT‘a VNT)a

defined using set of perceived objects O, set of probe functions F representing
object features, indiscernibility relation ~p, defined relative to B, C B C F,
family of neighbourhoods NV,, and neighbourhood overlap function vy, . The
relation ~p  is the usual indiscernibility relation from rough set theory restricted
to a subset B, C B. The subscript r denotes the cardinality of the restricted
subset B,, where we consider (“f'), i.e., | B| functions ¢; € F taken r at a time
to define the relation ~p, . This relation defines a partition of O into non-empty,
pairwise disjoint subsets that are equivalence classes denoted by [z] B, » Where

(2], ={2' € O] z~p, a'}.
These classes form a new set called the quotient set O/ ~p,., where
O/ NBr: {[‘T}BT ‘ x E O} M

In effect, each choice of probe functions B, defines a partition £p. on a set of
objects O, namely,

SB’!‘ = 0/ ~B, -

Every choice of the set B, leads to a new partition of O@. The overlap function
VN, is defined by
vn, 1 P(O) x P(O) — [0,1],

Table 4. Nearness Approximation Space Symbols

Symbol Interpretation

B BCF
B, r< \B[ probe functions in B,
~B, Indiscernibility relation defined using B,
[2] 5, (2], = {2’ € O| z ~5, 2'}, equivalence class,
O/ ~B, O/ ~p,= {[:r]BT | =€ O}, quotient set,
¢B, Partition £o0,8, = O/ ~pB,,
bi Probe function ¢; € F,

r (“f‘), i.e., | B| functions ¢; € F taken r at a time,
N, (B) N, (B) = {¢B,. | Br C B}, set of partitions,

VN, vy, : P(O) x P(O) — [0, 1], overlap function,
Nr(B)+X  Nr(B)+X =U,.(s, cx[®l]B,, lower approximation,
N.(B)*X Ny (B)*X = UZ:[Z]B Axlx]B, # 0, upper approximation,

Bndy, (5)(X) Nr(B)*X\N;(B).X ={x € N.(B)"X | 2 ¢ N.(B).X}.
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where P(0O) is the powerset of O. The overlap function vy, maps a pair of sets to
a number in [0, 1] representing the degree of overlap between sets of objects with
features defined by probe functions B, C B. For each subset B, C B of probe
functions, define the binary relation ~pg, = {(z,2') € O x O : V¢, € B,, ¢;(x) =
¢;(x')}. Since each ~p, is, in fact, the usual indiscernibility relation [I6], let
[] 5, denote the equivalence class containing z, i.e.,

[2]p, ={a" € O| Vf € B,, f(z') = f(2)}.

If (x,2') € ~p, (also written = ~p,_ 2'), then x and 2’ are said to be B-
indiscernible with respect to all feature probe functions in B,. Then define a
collection of partitions N,.(B) (families of neighbourhoods), where

N,(B)={¢s, | B, C B}.

Families of neighborhoods are constructed for each combination of probe func-
tions in B using (lBI)7 i.e., |B| probe functions taken r at a time. The family
of neighbourhoods N,.(B) contains a set of percepts. A percept is a byproduct
of perception, i.e., something that has been observed [I3]. For example, a class
in N,.(B) represents what has been perceived about objects belonging to a neigh-
bourhood, i.e., observed objects with matching probe function values.

Definition 4. Near Sets. Let X, X' C O,B C F. Set X is near X' if, and
only if there exists = € X, 2’ € X', ¢; € B such that = ~y4,3 2’

If X is near X'/, then X is a near set relative to X’ and X' is a near set relative
to X. Notice that if we replace X’ by X in Def. @ then a set X containing near
objects is a near set.

Theorem 2. Families of Neighbourhoods Theorem. A collection of parti-
tions (families of neighbourhoods) N,.(B) is a near set.

4.1 Sample Families of Neighbourhoods
Let X C O,B C F denote a set of sample objects {zg,x1,...,27} and set of

functions {s, a,p,r}, respectively. Sample values of the state function s: X —
{0,1} and action function a : X — {1,2,3} are shown in Table 2l Assume
reward function 7 : A — [0,1] and a preference function p : S x A — [0,1].
After discretizing the function values in Table [, we can, for example, extract
the collection of partitions Ny (B) for r = 1.
X = {$07$17...7x7},
Ni(B) = {€sy €1ays Egpy» Sy 5 wheere

5{ P = [»TO]{ 1o [352}{ 1o

§fa} = [$0]{a} [xl]{a} [ 3]{(1}’
En) = (2ol gy (22l s [wsl gy » (28]« [l gy

= [zolyy » [22]

Tolgry > P2lgry -
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4.2 Information Content of a Partition

The Shannon information content of an outcome z is defined by

h(@) =logz p, ()’
which is measured in bits, where bit denotes a variable with value 0 or 1, and
h(v) provides a measure of the information content of the event z = v [12], which
differs from the rough set-based form of entropy in [29]. The assumption made
here is that the event x = z; recorded in Table[2is random and that a sample X
has a uniform distribution, i.e., each event in the sample has the same probabil-
ity. In effect, Pr(z = z;) = |)1{|. The occurrence of a class [v]p = [i]p € &g, is
treated as a random event, and all classes in a partition {p, are assumed to be
equally likely. Then, for example, there are 2 classes in the partition £,y € N1(B)
and Pr([zo] € &) = loga1 = loga2 = 1. The information content H(X) of
an ensemble X is defined to be the average Shannon information content of the
events represented by X.

H(X)= Z Pr(x) - logz Prl(a:)'
reX

Then, for example, the information content of sample partitions in Ni(B) =
{5{5}, §(ay §{p}s §{T}} have the following information content.

1 1 1
-l0921 + 5 -l0921 =logs2 =1,
2 2

1
((3-l0g23) =, - (3-1.59) = 1.59,

H(Eg) = Higw) =,

H(&ay) =

H(f{p}) = : (5 . l0925) =23

Ut = W =

This suggests an approach to feature selection based on information content,
which is computationally rather simple.

5 Feature Selection

A practical outcome of the near set approach is a feature selection method. Recall
that each partition £, € N, (B) contains classes defined by the relation ~p,.. We
are interested in partitions in £, € N, (B) with information content greater than
or equal to some threshold th. The basic idea here is to identify probe functions
that lead to partitions with the highest information content, which occurs in
partitions with high numbers of classes. In effect, as the number of classes in a
partition increases, there is a corresponding increase in the information content
of the partition.

By sorting @ based on information content using Alg. [l we have a means
of means of selecting tuples containing probe functions that define partitions
having the highest information content.
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Algorithm 1. Feature Selection

Input : List @ of partitions, where @ [;] = number of classes in {g,. € N.(B),
threshold th.

Output: Ordered list I", where I'[i] is a winning partition.

Initialize ¢ = |P[;

Sort @ in descending order based on the information content of g, € N, (B);

while (@ [i] > th and i > 1) do

I'[i] = & [i;
i=1—1;
end

5.1 Sample Feature Selections

No(B) = {&(s,a} (s.p}> Efap} Efsir}» Efarrys E(pr} } » Where

(5.0} = {[$0]{s,a} ’ [Il]{s,a} ’ [51?2]{3,a} ’ [903]{s,a}} )

€(sp} = {[xo]u,p} w2l s py o (23l (s py 5 [Bal s py > (5] 46 ) - [26] 6,y - W{s,p}} ;

Stamt = {20 0a ) + 1) 10 0 220 gy 23y » 0] gy 5] gy [0y 07 gy
Esry = {[ﬁo]{s,r} NEZI P [xﬁ]{s,r}} ;

€ty = {[20) 0y s 1) {0y s 2] 0y > 03 a0y s [0y |

€ty = {0l gy s 2y s @3]y s @l gy [25] g0y 26103 |

This section continues the exploration of the partitions in families of neighbour-
hoods for each choice of r < |B|. The observations in Table 2l were produced by
an ecosystem simulation reported in [25]. The function values in Table 2] were
discretized using ROSE [28]. ROSE was used in this study because it allows
the user to use as input a discretized table. This was important for us because
Table Bl was discretized using a local Object Recognition System (ORS) toolset.
The ORS discretized table was used to define the partition of the sample ob-
jects in Table 21 Collections of partitions Na(B), N3(B) can be extracted from
Table 2 (in this section, No(B) is given and the display of N3(B) is omitted to
save space).

Table 5. Partition Information Content Summary

§ H & H ¢ H
f{s} 1.0 5{87(1} 2.0 f{s,am} 3.0
f{a} 1.59 f{s,p} 2.8 f{am,,«} 3.0
f{p} 2.3 5{0717} 3.0 f{s,aw} 1.63
gy 1.0 Erory 158 Epopy 2.8

Efa,ry 1.46
Epry 1.63
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In the single feature case (r = 1), functions a and p define partitions with
the highest information content for sample X represented by Table 21 Notice
that preference p is more important than a in the ecosystem experiments, be-
cause p indicates the preferred action in a give state. In the two feature case
(r = 2), feature combination a, p define a partition with the highest information
content, namely, 3 (see Table []). If we set the threshold » > 3, then features
a,p (action, preference) are selected because the information content of partition
H(&1a,py) = 3 in No(B), which is also one of the reducts found by ROSE [28] us-
ing Table 2] as input. Notice that a, p defines all of the high scoring partitions in
Table[Hl Similarly, for N3(B), the features s, a, p are selected, where the informa-
tion content of H({(s4py) = 3 (highest) and H ({(s,q,-1) = 1.58 (lowest) which
is at variance with the findings by ROSE, which selects {s,a,r} as a reduct.
Finally, notice that ROSE selects a as the core feature and the highest scoring
partitions defined by combinations of functions containing a.

(a) Parts of Flower (b) Iris setosa

Fig. 1. Fisher Iris Taxonomy

5.2 Feature Selection for Fisher’s Iris Taxonomy Measurements

A second illustration of the near set approach to feature selection is based on
Fisher’s taxonomic measurements [6] of length L and width W (in mm) of the
sepals and petals of three species of Iris flowers(Iris setosa canadensis, Iris ver-
sicolor, and Iris virginica). Sepals form a protective layer (called calyx) that en-
closes the petals of a flower (see Fig.[I(a)]). Petals form a whorl (corolla) within
the sepals and enclose the reproductive organs. A sample Iris setosa is shown
in Fig. These measurements consist of 50 samples of each type of Iris and
are available from many sourcesﬁ. Let Ls, Wy, Ly,, W, denote sepal length, sepal
width, petal length and petal width, respectively. Let X, B denote Fisher’s set
of sample Iris flowers and set of functions representing features of the sepals and
petals, respectively. An overview of the partitions for the each of the families of
neighbourhoods for the Iris measurements is given, next.

2 UCI Machine Learning archives, http://mlearn.ics.uci.edu/MLRepository.html
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X ={xzo,z1,..., %150},
B = {LS, WsaL;Da Wp}7

(B)
Na(B)
Ns(B) = {&0, wa,L, 1 E100WasLpb> §(Lo, War Ly} (LW Ly} ) -
Ni(B)

= {g{LSvaLmWP}} N

The distribution of the feature values for the high scoring feature-triplets
{Ws, Ly, W,} is shown in Fig. 2l This visualization of the Iris measurements has
been extracted from [3]. Another view of the distribution of Iris measures is given
in a textile plot in Fig. Blfrom [I1]. Each quadrant in the 3D view in Fig.[2shows
the distribution of the Iris measurements (this is made clearer by the separate
distributions of the measurement pairs shown in the darkened 2D areas in Fig.[2]
e.g., the lower lefthand corner of the 2D views represents the distribution of the
measurements for {Lg, W, }). Except for the mistaken use of centimeter instead
millimeter unit of measurement in the textile plot, the separation of the feature
values for Iris setosa from versicolor and virginica measurements corroborates in
the textile plot in Fig. Bl confirms the results from [4]. It is this separation that
motivated the use of Iris setosa measurements as a basis for feature selection.
A summary of the information content of the partitions of the set of Iris setosa
measurements is given in Table

For the sake of comparison with the evaluation of the results in Table [l
ROSE was used to find the reducts for the Iris measurements. It was found
that the reduced feature sets are {Ls, W, Ly}, {Ls, Ws, Wy}, {Ws, Lp, W, 1},
and {Ls, W, Ly} (all combinations of 3 features). Notice that the informa-
tion content values for the partitions in N3(B) are approximately the same

T
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Fig. 2. Visualization of Iris Measurements
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Fig. 3. Textile Visualization of Iris Measurements

Table 6. Iris Setosa Partition Information Content Summary

& H & H ¢ H ¢ H

ooy 417 Eooowey 525 g{LS,WS,Lp} 5.52 §{LS,WS,LP,WP} 5.61
Eqw,y 3.46 .f{Lspr} 5.23 g{Ls,Ws,Wp} 5.55
f{Lp} 3.91 §{WS,LP} 5.29 g{Ws,Lp,Wp} 5.61
E{Wp} 3.32 E{WSva} 5.21 §{L5,Lp,Wp} 5.61
g{Wp,Wp} 5.00
E{vawp} 5.13

as the information content of the partition in N4(B), which corroborates the
feature set reduction results from ROSE. Further, notice that the informa-
tion content of {7 ) for the length-of-petal L, partition (i.e., H({(z,}) =
3.91). This feature is a member of each of the highest scoring reducts, namely,
H(w, L,w,y) = H(L, 0,,w,}) = 5.61. Also, notice that the highest scor-
ing feature pair {Ws, L,} (H(&w,,z,}) = 5.29) is also a member of one of the
highest scoring reducts, namely, {Ws, Ly, W}, }, where H(&qw, 1,.w,}) = 5.61.

5.3 Complexity Issue

Notice that the proposed feature selection method is based on collections of par-
titions (families of neighborhoods) constructed for each combination of probe
functions in B using (“fl)7 i.e., |B| probe functions taken r at a time. Hence, the
proposed method has very high complexity for large B. To achieve feature selec-
tion with polynomial time complexity, features are selected by considering only
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the partitions in Ny(B) or in Ny(B). This approach can be used to identify all of
those partitions with information content H(£y) for partition X/ ~s, defined
relative to a single function f representing a feature of the sample objects or for
combinations of pairs of features, i.e., r = 1 or r = 2. For recognition of sample
objects with thousands of features, this approach is useful in an unsupervised
learning environment. More work needs to be done on the proposed feature
selection method to make it useful in discovering reducts suitable for supervised
learning for sample objects with many features.

6 Conclusion

The proposed near set approach to feature selection is tractable, since it is always
possible to find the information content of partitions of sample objects at the
single feature level within a reasonable time. The results reported in this paper
corroborate Ewa Orlowska’s observation that perception is more feasible at the
class level than they are at the object level [I4]. This is apparent in the contrast
between the diffusion of the 2D clusters or 2D textile plots of Iris measurements
and the information content measurements for partitions of Iris measurements.
The kernel of the near set approach to feature selection is a direct result of
the original approach to the classification of objects introduced by Zdzistaw
Pawlak during the early 1980s [I6]. Feature selection is based on measurement
of the information content of the partitions defined by selected combinations
of features. Future work will include consideration of the relation between the
proposed feature selection method for large numbers of features for objects in
various sample spaces.
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Abstract. In this paper, we present an evaluation of accuracies of temporal
rules obtained from the integrated temporal data mining environment using
trading dataset from the Japanese stock market. Temporal data mining is one of
key issues to get useful knowledge from databases. However, users often face
on difficulties during such temporal data mining process for data pre-processing
method selection/construction, mining algorithm selection, and post-processing
to refine the data mining process. To get rules that are more valuable for do-
main experts from a temporal data mining process, we have designed an envi-
ronment, which integrates temporal pattern extraction methods, rule induction
methods and rule evaluation methods with visual human-system interface.
Then, we have done a case study to mine temporal rules from a Japanese stock
market database for trading. The result shows the availability to find out useful
trading rules based on temporal pattern extraction.

1 Introduction

In recent years, KDD (Knowledge Discovery in Databases) [3] has been widely
known as a process to extract useful knowledge from databases. In the research field
of KDD, ‘Temporal (Time-Series) Data Mining’ is one of important issues to mine
useful knowledge such as patterns, rules, and structured descriptions for a domain
expert. However, huge numerical temporal data such as stock market data, medical
test data, and sensor data have been only stored to databases.

Besides, many temporal mining schemes such as temporal pattern extraction meth-
ods and frequent itemset mining methods have been proposed to find out useful
knowledge from numerical temporal databases. Although each method can find out
partly knowledge of each suggested domains, there is no systematic framework to
utilize each given numerical temporal data through whole of the KDD process.

To above problems, we have developed an integrated temporal data mining envi-
ronment, which can apply numerical temporal data to find out valuable knowledge

Z.W. Ras, S. Tsumoto, and D. Zighed (Eds.): MCD 2007, LNAI 4944, pp. 72 2008.
© Springer-Verlag Berlin Heidelberg 2008
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systematically. The environment consists of temporal pattern extraction, mining,
mining result evaluation support system to attempt numerical temporal data from
various domains.

In this paper, we present an evaluation of the integrated temporal data mining envi-
ronment with Japanese stock market data. Then, we discuss about the availability of
the temporal rule mining process based on temporal pattern extraction.

2 Related Work

Many efforts have been done to analyze temporal data at the field of pattern recogni-
tions. Statistical methods such as autoregressive model and ARIMA (AutoRegressive
Integrated Moving Average) have been developed to analyze temporal data, which
have linearity, periodicity, and equalized sampling rate. As signal processing meth-
ods, Fourier transform, Wavelet, and fractal analysis method have been also devel-
oped to analyze such well formed temporal data. These methods based on mathematic
models restrict input data, which are well sampled. However, temporal data include
ill-formed data such as clinical test data of chronic disease patients, purchase data of
identified customers, and financial data based on social events. To analyze these ill-
formed temporal data, we take another temporal data analysis method such as DTW
(Dynamic Time Wrapping)[1], temporal clustering with multiscale matching [5], and
finding Motif based on PAA (Piecewise Approximation Aggregation) [6].

To find out useful knowledge to decide orders for stock market trading, many studies
have done. For example, temporal rule induction methods such as Das’s framework [2]
have been developed. Frequent itemset mining methods are also often attempt to the
domain [15]. Although they analyze the trend of price movement, many trend analysis
indices such as moving average values, Bollinger band signals, MACD signals, RSI and
signals based on balance table are often never considered. In addition, these studies aim
not to find out decision support knowledge, which directly indicates orders for stock
market trading, but useful patterns to think better decision by a domain expert. There-
fore, the decision support of trading order is still costly task even if a domain expert uses
some temporal data analysis methods. The reason of this problem is that decision crite-
ria of trading called anomaly are obtained from very complex combination of many
kinds of indices related to the market by domain experts.

3 An Integrated Temporal Data Mining Environment

Our temporal data mining environment needs temporal data as input. Output rules are
if-then rules, which have temporal patterns or/and ordinal clauses, represented in A=x,
A<=y, and A>z. Combinations of extracted patterns and/or ordinal clauses can be
obtained as if-then rules by a rule induction algorithm. Fig. 1 illustrates a typical out-
put it-then rule visualized with our temporal data mining environment.

To implement the environment, we have analyzed temporal data mining frame-
works [2, 10]. Then, we have identified procedures for pattern extraction as data pre-
processing, rule induction as mining, and evaluation of rules with visualized rule as
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IF:

courses of observation period

THEN:

course of prediction period

Test item A

Fig. 1. Typical output if-then rule, which consists of patterns both its antecedent and its consequent
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Fig. 2. A system flow view of the integrated temporal data mining environment

post-processing of mined result. The system provides these procedures as commands for
users. At the same time, we have designed graphical interfaces, which include data
processing, validation for patterns on elemental sequences, and rule visualization as
graphs. Fig. 2 shows us a typical system flow of this temporal data mining environment.

3.1 Details of Procedures to Mine Temporal Rules

We have identified procedures for temporal data mining as follows:
Data pre-processing
- pre-processing for data construction
- temporal pattern extraction
- attribute selection
Mining
- rule induction
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Post-processing of mined results
- visualizing mined rule
- rule selection
- supporting rule evaluation
Other database procedures
- selection with conditions
- join

As data pre-processing procedures, pre-processing for data construction procedures
include data cleaning, equalizing sampling rate, interpolation, and filtering irrelevant
data. Since these procedures are almost manual procedures, they strongly depend on
given temporal data and a purpose of the mining process. Temporal pattern extraction
procedures include determining the period of sub-sequences and finding representa-
tive sequences with a clustering algorithm such as K-Means, EM clustering and the
temporal pattern extraction method developed by Ohsaki et al. [12]. Attribute selec-
tion procedures are done by selecting relevant attributes manually or using attribute
selection algorithms [7].

At mining phase, we should choose a proper rule induction algorithm with some
criterion. There are so many rule induction algorithms such as Version Space [9],
AQI1S5 [8], C4.5 rule [13], and any other algorithm. To support this choice, we have
developed a tool to construct a proper mining application based on constructive meta-
learning called CAMLET. However, we have taken PART [4] implemented in Weka
[16] in the case study to evaluate improvement of our pattern extraction algorithm.

Training data Test data

‘ Datasets without Temporal Patterns ' ‘ Datasets without Temporal Patterns l
t t

—p —-
' Pattern extraction ' Predicting patterns
with clustering / with classification

‘ Datasets with Temporal Patterns Datasets with Temporal Patterns l

Learning —_—

t
—_—
classification
H model with L.

Fig. 3. The process to obtain a test dataset based on temporal patterns of a training dataset using
classification learning algorithm

To predict class of a test dataset with learned a classification model, the system
should formally predict pattern symbols of the test dataset using some classification
learning method L based on the training dataset as shown in Figure 3.
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To validate mined rules correctly, users need readability and ease for understand
about mined results. We have taken 39 objective rule evaluation indexes to select
mined rules [11], visualizing and sorting them depended on users’ interest. Although
these two procedures are passive support from a viewpoint of the system, we have
also identified active system reaction with prediction of user evaluation based on
objective rule evaluation indexes and human evaluations.

Other database procedures are used to make target data for a data mining process.

Since the environment has been designed based on open architecture, these proce-
dures have been able to develop separately. To connect each procedure, we have only
defined input/output data format.

4 Evaluating Temporal Rule Mining Performances with the
Integrated Temporal Data Mining Environment

After implementing the integrated temporal data mining environment described in
Section 3, we have done a case study on Japanese stock market database.

In this case study, we firstly gathered temporal price data and its trend index values
through Kaburobo SDK [17]. Then, using the environment, we evaluated the per-
formance of if-then rules based on temporal patterns. Finally, with regarding to the
results, we discuss about the availability of our temporal rule mining based on tempo-
ral pattern extraction.

Table 1. The descripiton about attributes from Kaburobo SDK.

Attribute name Description
R opening opening price of the day (0, )
Q/ high Highest price of the day ( #, )
low Lowest price of the day ( L, )
closing Closing price of the day ( C,)
Volume Volume of the day ( \/’)
T Moving Average Buy: if SMA, - LMA, <0NSMA, | — LMA, , >0,Sell: if SMA, —LMA, >0NSMA,_, —LMA_, <0
R Where SMA, =(C,+C,_ +h +C_,)/13 ,and LMA =(C,+C, ,+h +C,,)/26
E Bolinger Band Buy: if C, 2(MA,+20)x0.05 , Sell: if C, <(MA —206)x0.05 where MA, =(C,+C,_, +h +C,_,,)/25
D Envelope Buy: if C, =MA +(MA x0.05) , Sell: if C, < MA - (MA, x0.05)
HLband Buy: if C, < LowLine, ,q,,,, Sell: if C,> HighLine_q,,,
:\‘ MACD Buy: if MACD, - AvgMACD, ,,,,,, >0 MACD, , - AvgMACD,
b Sell: if MACD, - AvgMACD, 0NMACD,_, - AvgMACD,
) Where MACD, = EMA ,,,,,, — EMA ..., EMA = EMA,_, +(2/ range+1)(C,_, — EMA,_,)
c DMI Buy: if Pp1, — MDI, >0~ PDI_, —-MDI,_, <0, Sell: if PDI, - MDI, <0 PDI,_, - MDI,_, >0
E Where pp1 = 3" (H, - H, ,x100, MDI =Y (L ~L_)+ > TR, X100
s TR =max((H,~C, )(C, ~L).(H,-L)y
volumeRatio VR ={( ZV' + ZV’ Y ZV + ZVr )}x100
(=-3SHL im-OSHeL  im-3SH<l, i3S H =L
RSl RSI,=100-100/{ ' (C,,=C)/ D (C,-C)+1)
=150, <C, =150, >C,
Momentum M, =C-C.,
Ichimoku1 Buy:if C,_, <RL, g, NC,>RL,_y,,, Sell:if C,_,>RL, _,,, NC, <RL _y,,,
Where RL,_,,,, = average(max(H,)+min(L))) (i=i-8./-7h 1)
lchimoku2 Buy:if €y <RL i NG, > RLy g0 SHC > RL, 554, N C, < RLy 50,
Where RL, 5, =average(max(H,)+min(L))) (i=r-251-24,1 1)
lehimoku3d Buy: _" RL ) 6y < RLG ) 90ty O RL 1y gaays > RL 1y gauye O RL 1y sgiays < RL 0y
Sell: if RL(/*Z)*II)(I«\\ > RL(l—llf'Jdm\ N RL(/*!)*Z(\:M\\ < RL(/’\ )-9days al RL(/*!)*Z(»:M\\ > RLl—lmlm\
Ichimoku4 Buy: if C, > AS1,_,sNC, > AS2, ., Sell:if C, <AS1_,,NC, <AS2

Where AS1, = median(RL, gy, = RL_s,0,s), AS2, = (max(H,) —min(L;))/2 (i=1-511-50.h 1)
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4.1 Description About Temporal Datasets

Using Kaburobo SDK, we got four price values, trading volume, and 13 trend indices
as attributes of each target dataset as shown in Table 1. Excepting DMI, volume ratio,
and momentum, the trend indices are defined as trading signals: buy and sell. The
attribute values of these indices are converted from 1.0 to -1.0. Thus, 0 means nothing
to do (or hold on the stock) for these attributes.

We obtained temporal data consists of the above mentioned attributes about five
financial companies and four telecommunication companies as follows: Credit Saison
(Saison), Orix, Mitsubishi Tokyo UFJ Financial Group (MUFJFG), Mitsui Sumitomo
Financial Group (MSFG), Mizuho Financial Group (MizuhoFG), NTT, KDDI, NTT
Docomo, and Softbank. The period, which we have collected from the temporal stock
data, is from 5™ January 2006 to 31* May 2006. For each day, we have made deci-
sions as the following: the decision is if the closing value rises 5% within 20 days
then 'buy’, otherwise if the closing value falls 5% within 20 days then 'sell’, otherwise
'hold'. We set these decisions as the class attribute to each target instance. Table 2
shows the class distributions about the nine stocks for the period.

Table 2. The distributions of decisions of the nine stocks during the five months

[Finance Buy sell Telecom. buy sell
Saison 37 53 INTT 27 32
Orix 43 40 KDDI 42 39
MUFJFG [0 50 INTTdocomo 19 29
MSFG 6 27 Softbank 23 69
MizuhoFG |38 31

‘ Dataset for Temporal Pattern Extraction '

Pri(ie / Iechnical Inde)&values t

—_—
\
Separating

Each Index
S ' Clustring each items
- & join decisions
Sub Target Dataset i
Sequence

Decision point

Sub-Sequenced Data

tot Pt
Price / Technical Index pattern symbols Decision

Fig. 4. An illustration of the process to obtain target datasets from temporal data
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For each gathered temporal data of the nine stocks, the system extracted temporal
patterns for each attribute. Then, the symbols of each pattern and the decision of each
day joined as each instance of the target dataset as illustrated in Figure 4.

4.2 Evaluating Temporal Pattern Prediction by Boosted C4.5

To extract temporal patterns, we have used K-Means and EM algorithm, which are
implemented in Weka. Then, to predict temporal pattern of each test dataset, we have
used Boosted C4.5 [14], which is also implemented in Weka.

Table 4 shows accuracies of temporal pattern prediction using Boosted C4.5 on
patterns obtained by each clustering algorithm. These accuracies are averages of 100
times repeated 10-fold cross validation on the 18 datasets of attributes of each target
dataset.

Table 3. Accuracies (%) of temporal pattern prediction by Boosted C4.5 on the two clustering
algorithm

K-Means Saison MUFJFG MSFG MizuhoFG Orix KDDI __NTT _ NTTdocomo Softbank [AVERAGE
opening 88.0 83.0 86.0 89.0 83.0 93.0 920 91.0 93.0 887
high 84.0 88.0 94.0 87.0 83.0 930 91.0 90.0 95.0 894
low 85.0 92.0 90.0 92.0 81.0 930 91.0 92.0 91.0 897
closing 86.0 86.0 93.0 91.0 740 930 920 89.0 95.0 888
volume 70.0 79.0 86.0 720 71.0 79.0 80.0 69.0 85.0 768
MovingAverage| 96.0 949 8438 889 818 919 626 94.9 62.6 843
BollingerBand 94.9 90.9 79.8 93.9 949 80.8 100.0 86.9 100.0 914
Envelope 89.9 89.9 939 89.9 899 859 828 100.0 80.8 892
HLband 91.9 83.8 90.9 89.9 838 879 768 72.7 91.9 855
MACD 84.8 919 778 81.8 919 768 909 71.7 61.6 810
DMI 76.8 84.8 889 828 909 859 859 90.9 77.8 850
volumeRatio 87.9 87.9 919 88.9 909 919 919 92.9 84.8 899
RSI 85.9 88.9 859 88.9 838 879 838 89.9 86.9 869
Momentum 82.8 85.9 76.8 81.8 869 859 828 85.9 89.9 843
Ichimoku1 67.7 92.9 909 86.9 747 485 879 57.6 79.8 763
Ichimoku2 58.6 879 778 828 838 586 737 86.9 68.7 754
Ichimoku3 97.0 97.0 949 74.7 100.0 100.0 100.0 75.8 90.9 923
Ichimoku4 78.8 84.8 939 89.9 919 737 939 81.8 93.9 870
EM Saison  MUFJFG _MSFG_MizuhoFG Orix KDDI _ NTT _ NTTdocomo Softbank |AVERAGE
opening 88.0 93.0 86.0 89.0 99.0 90.0 90.0 93.0 94.0 91.3
high 90.0 88.0 85.0 96.0 93.0 90.0 91.0 93.0 91.0 90.8
low 94.0 91.0 92.0 90.0 940 92.0 80.0 95.0 90.0 90.9
closing 87.0 95.0 83.0 92.0 97.0 93.0 84.0 93.0 89.0 90.3
volume 72.0 58.0 77.0 640 640 71.0 81.0 60.0 86.0 70.3
MovingAverage| 49.5 63.6 65.7 545 63.6 434 424 54.5 46.5 53.8
BollingerBand 74.7 82.8 80.8 59.6 86.9 48,5 100.0 74.7 100.0 78.7
Envelope 85.9 909 859 606 747 788 57.6 100.0 87.9 80.2
HLband 7.7 89.9 8438 879 798 687 58.6 57.6 77.8 75.2
MACD 63.6 515 495 495 586 64.6 444 58.6 40.4 53.4
DMI 55.6 62.6 69.7 455 80.8 576 384 57.6 59.6 58.6
volumeRatio 89.9 81.8 929 939 818 848 859 92.9 92.9 88.6
RSI 85.9 88.9 929 869 808 899 818 80.8 84.8 85.9
Momentum 84.8 879 818 889 899 859 788 84.8 88.9 85.7
Ichimoku1 47.5 39.4 455 475 545 56.6 60.6 54.5 47.5 50.4
Ichimoku2 50.5 46.5 515 636 58.6 545 535 41.4 65.7 54.0
Ichimoku3 72.7 80.8 75.8 97.0 100.0 100.0 100.0 85.9 97.0 89.9
Ichimoku4 82.8 82.8 87.9 949 626 76.8 78.8 85.9 97.0 83.3
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4.3 Mining Results of the Nine Temporal Stock Data

In this section, we show accuracies of temporal rule mining with PART on each data-
sets themselves and cross-stocks.

As shown in Table 4, predicting temporal patterns for test dataset are succeeded,
because the accuracies of the nine dataset are satisfactory high scores as a classifica-
tion task.

Table 4. Accuracies (%) of re-substitution on the two temporal pattern extraction with
K-Means and EM algorithm

Finance K-Means EM Telecom. K-Means EM
Saison 90.1 88.9 NTT 84.8 90.9
Orix 88.9 84.8 KDDI 86.9 78.8
MUFJFG 90.9 93.9 NTTdocomo 80.8 85.9
MSFG 96.0 90.9 Softbank 93.9 89.9
MizuhoFG 92.9 83.8

Table 5 shows accuracies (%) of cross stock evaluation on the two temporal pattern
extraction algorithms. The cross stock evaluation uses different stocks as training
dataset and test dataset. Stocks in rows mean training datasets, and columns mean test
datasets. As shown in this table, bolded accuracies go beyond 50%, which means that
the mined rules work better than just predicting sell or buy. The result shows the per-
formance of our temporal rules depends on the similarity of trend values rather than
the field of each stock.

Table 5. Accuracies (%) of cross stock evaluation with tempral patterns using K-Means and
EM algorithm

K-Means Saison MUFJFG MSFG MizuhoFG Orix NTT KDDI NTTdocomo Softbank
Saison 444 28.3 31.3 40.4 29.3 35.4 22.2 49.5
MUFJFG 46.5 44.4 30.3 42.4 32.3 39.4 29.3 55.6
MSFG 44.4 242 384 31.3 28.3 27.3 29.3 22.2
MizuhoFG 46.5 31.3 33.3 29.3 22.2 20.2 222 58.6
Orix 38.4 50.5 27.3 31.3 32.3 39.4 19.2 30.3
NTT 14.1 50.5 27.3 31.3 141 39.4 374 6.1
KDDI 12.1 444 56.6 27.3 31.3 41.4 55.6 16.2
NTTdocomo 26.3 40.4 52.5 33.3 23.2 30.3 20.2 8.1
Softbank 44.4 28.3 18.2 45.5 34.3 40.4 30.3 26.3

EM Saison  MUFJFG MSFG MizuhoFG Orix NTT KDDI NTTdocomo Softbank
Saison 46.5 28.3 31.3 38.4 51.5 65.7 21.2 323
MUFJFG 31.3 51.5 31.3 38.4 29.3 414 222 46.5
MSFG 23.2 58.6 34.3 31.3 434 32.3 30.3 29.3
MizuhoFG 35.4 31.3 34.3 31.3 424 38.4 434 20.2
Orix 41.4 29.3 39.4 34.3 374 21.2 28.3 25.3
NTT 41.4 21.2 20.2 42.4 44.4 333 23.2 39.4
KDDI 61.6 59.6 50.5 28.3 27.3 424 28.3 374
NTTdocomo 27.3 42.4 29.3 52.5 25.3 30.3 19.2 28.3
Softbank 52.5 45.5 27.3 31.3 414 33.3 43.4 19.2
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Figure 5 shows an example of temporal rules. These rules are obtained from the
training dataset with EM algorithm temporal pattern extraction for Saison. As shown
in Table 3, the rule set of Saison works the best to KDDI test dataset.

The rule for ‘buy" The rule for ‘sell'

omentum _ Bolinger
T gana” opening

52 sell] Ichimoku4
1862 sell] 5760] chimoku

buy

— cpening \ \(‘/J —o—Ichimokud
—*—BolingerBand #

-

ey hold | Lo,

-172.0] buy| 5619 |[Yf L

7 65 55 45 B 25 15 5 75 65 55 45 35 25 15 5
days days

Fig. 5. An example of rule for buy' and rule for 'sell'

4.4 Discussion About the Temporal Rule Mining

As for temporal pattern prediction by Boosted C4.5, the algorithm achieved high
accuracies to raw valued attributed such as opening, high, low and closing on each
clustering algorithm. However, to predict temporal patterns obtained by EM algo-
rithm, Boosted C4.5 did not work well to the other attributes. To predict temporal
patterns more exactly, we need to introduce some learning algorithm selection
mechanism.

The prediction of decisions for each dataset works satisfactorily with regarding to
the result of Table 4, predicting temporal patterns of test dataset with Boosted C4.5.
However, mined rules based on temporal patterns are rather over fitting to each train-
ing dataset as shown in Table 5. One of the solutions to avoid over fitting will be to
mine a temporal rule set from a training dataset, which consists of multiple stocks.

With regarding to Figure 5, our temporal rule mining system can find out adequate
combinations of trend index patterns for each stock. To learn adequate trend index
pattern combinations is very costly work for trading beginners. Thus, our temporal
rule mining can support traders who want to know the adequate combinations of trend
indices for each stock.

5 Conclusion

We have designed and implemented a temporal data mining environment, which
integrates temporal pattern extraction, rule induction, and rule evaluation.

As the result of the case study on the nine Japanese stock datasets, this environ-
ment mines valuable temporal rules to predict different stock decisions based on tem-
poral pattern extraction. The result also indicated the availability to support stock
traders to learn adequate combinations of trend index patterns.
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In future, we will evaluate trading result with the predictions of decisions by each

mined temporal rule set on the stock trading simulator included in Kaburobo SDK.

Although we have not tried to select proper algorithms for the temporal pattern ex-

traction procedure, the attribute selection procedure and the mining procedure, it is also
able to connect subsystems for selecting each proper algorithm to this environment.
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Abstract. Word meaning ambiguity has always been an important
problem in information retrieval and extraction, as well as, text min-
ing (documents clustering and classification). Knowledge discovery tasks
such as automatic ontology building and maintenance would also profit
from simple and efficient methods for discovering word meanings. The
paper presents a novel text mining approach to discovering word mean-
ings. The offered measures of their context are expressed by means of
frequent termsets. The presented methods have been implemented with
efficient data mining techniques. The approach is domain- and language-
independent, although it requires applying part of speech tagger. The
paper includes sample results obtained with the presented methods.

Keywords: Association rules, frequent termsets, homonyms, polysemy.

1 Introduction

Discovery of word sense is what lexicographers do by profession. Automating
this process has a much shorter history. First attempts were made in the 1960s
by Sparck Jones [I6]. In modern text mining and information retrieval, knowing
the exact sense (or meaning) of a word in a document or a query becomes
an important issue. It is considered that knowledge of an actual meaning of
a polysemous word can considerably improve the quality of the information
retrieval process by means of retrieving more relevant documents or extracting
relevant information from the documents.

As sufficiently large corpora and efficient computers have become available,
several attempts to automate the process have been undertaken. An overview
of methods that have used artificial intelligence, machine readable dictionaries
(knowledge-based methods) or corpora (knowledge-poor methods) can be found
in [RIT3].

Many other text processing and knowledge management tasks, such as auto-
matic translation, information extraction or ontology comparison, also require
the ability to detect an actual meaning of a word.

* The work has been performed within the project granted by France Telecom.

Z.W. Ra$, S. Tsumoto, and D. Zighed (Eds.): MCD 2007, LNATI 4944, pp. 822008.
© Springer-Verlag Berlin Heidelberg 2008
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The importance of polysemy detection becomes even clearer when one looks
at the statistics for the English language. As stated in [I1]:

“It has been estimated that more than 73% of words used in common English
texts are polysemous, i.e., more than 73% of words have more than one sense.”

One should also note that many of those 73% words are highly polysemous. As
stated in [10], an estimate of the average number of senses per word for all words
found in common English texts is about 6.55. Therefore, there is a great need
for methods able to distinguish polysemous words, as well as, their meanings.

Unfortunately, manually created dictionaries, which tend to ignore domain spe-
cific word senses, are not sufficient for the above mentioned applications. For this
reason an amount of research concerning algorithms for automatic discovery of
word senses from text corpora was carried out. An excellent survey of the history
of ideas used in word sense disambiguation is provided by Ide and Veronis [g].

As for today, no satisfactory method has been described in the literature for
discovering word meanings. However, a few methods that address this problem
merit attention. Two main strategies for finding homonyms described in the lit-
erature are: Word Sense Discrimination (WSDc), i.e. the task of grouping the
contexts that represent the senses of a polysemous word, and Word Sense Dis-
ambiguation (WSDa), i.e. the task of automatic labeling of polysemous words
with a sense tag taken from a predefined set, [13]. There are a couple of different
approaches to Word Sense Discrimination, as vector or cluster based, for exam-
ple. The first one treats words as numeric vectors, whereas the second groups
words with similar meaning into clusters. Most methods, however, use word
distributional data and statistical analysis.

In the presented paper a novel text mining approach to discovery of homonyms
is presented. The method applies the Word Sense Discrimination strategy, car-
rying out only shallow text analysis, which is restricted to the recognition of
parts of speech, and is domain-independent. The method consists in determin-
ing atomic contexts of terms of interest by means of maximal frequent termsets,
which then are used for determining discriminant contexts. The rest of the paper
is organized as follows: some relevant examples of WSDc systems are described
in Section 2. Section 3 presents a deeper analysis of the problem as well as the
basic ideas and concepts of the proposed method. The experiments and their
results are presented in Section 4. Finally, Section 5 concludes the paper.

2 Related Work

As mentioned above, during the past years, a number of various approaches for
the discovery of word senses and meanings have been proposed [8]. In [9] and [12]
the authors describe a set of problems that are faced, when applying them to
real data. The main ones are: data sparseness, infrequent meanings, overlapping
meanings and the use of part-of-speech tags. Some of them are described in more
detail below.

The method Clustering by Committee, introduced in [12], is based on gram-
matical relations between words. It requires that all documents are POS tagged



84 H. Rybinski et al.

and, what is also important, grammatically correct. Each word in this method is
represented as a feature vector, where each feature corresponds to a context that
the word in question appears in. After computing all vectors, words considered
as similar are grouped into clusters. Each cluster represents a single meaning.
Finally, for each word the most similar clusters, with respect to a given minimal
similarity measure value, are determined. These closest clusters constitute all
discovered meanings of a word. The authors claim, that this method discovers
also less frequent senses of a word and avoids discovering duplicate senses.

Another group of methods used for discovering word senses are Bayesian net-
works [I7]. These methods are based on the statistical analysis and can be used
in the situations, when only small or insufficient amount of data is available, e.g.
when larger amount of data would prevent the system from being able to handle
it. A Bayesian network is built using local dependencies between words. In such
a network, each node represents a word, and an edge represents a conditional
probability of the connected nodes. Bayesian networks can be used to determine
a probability of co-occurrence of a set of words.

Markov clustering method [2] concentrates on analyzing texts written in a
natural language. This method allows discovering the meanings of words used
by examined group within a particular range. It follows an assumption, that
nouns which frequently appear together in a list, are also semantically related.
A result of the Markov clustering is a graph, where nouns co-occurring with
appropriate frequency are connected with an edge. The ambiguous words are
those that are connected with disjunctive parts of such a graph.

The main concern indicated in many papers is the size of the repositories, on
which the experiments are carried out. Too little data leads to data sparseness
problems; too much data causes the memory lack problems. In addition, current
part-of-speech taggers still occasionally fail to produce the correct results, thus
leading to errors.

In most cases, the methods for discovering meanings require the use of a pre-
defined set of meanings for a word, which is their main disadvantage. Usually,
the methods require checking found meanings against those contained by a se-
mantic dictionary, thesaurus, ontology etc., which are not easily available. It is
therefore desired to develop other methodologies that could also give satisfactory
results for the cases of a limited lexical support. Such methodologies are known
as “knowledge-poor”.

The new method proposed in the paper satisfies this constraint, compromising
both simplicity and sufficient efficiency. It also manages to handle the problem
of overlapping meanings, as well as data sparseness and infrequent meanings.

3 Homonyms and Maximal Frequent Termset Contexts

Distinct meanings of homonyms are indicated by various distinct contexts in
which they appear frequently. This assumption is based on the distributional
hypothesis [6], where the underlying idea is that “a word is characterized by
the company it keeps”. The rule is very intuitive and therefore is applied to the
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proposed approaches. The problem is, however, how the notion of a context is
defined. For example, it can be understood as a set of words surrounding a target
word frequently enough in documents, paragraphs, or sentences.

In our approach, a context is evaluated with respect to paragraphs as below.

Let dictionary D = {t1,t2,...,tm} be a set of distinct words, called terms. In
general, any set of terms is called a termset. The set P is a set of paragraphs,
where each paragraph P is a set of terms such that P C P.

Statistical significance of a termset X is called support and is denoted by
sup(X). sup(X) is defined as the number (or percentage) of paragraphs in P
that contain X. Clearly, the supports of termsets that are supersets of termset
X are not greater than sup(X).

A termset is called frequent if it occurs in more than
varepsilon paragraphs in P, where ¢ is a user-defined support threshold.

In the sequel, we will be interested in maximal frequent termsets, which we
will denote by M F' and define as the set of all maximal (in the sense of inclusion)
termsets that are frequent.

Let « be a term. By M F(z) we denote all maximal frequent termsets con-
taining x. M F(x) will be used for determining atomic contexts for x.

A termset X, x ¢ X, is defined as an atomic context of term z if {x}UX is an
element of M F'(z). The set of all atomic contexts of z will be denoted by AC(z):

AC(z) ={X\{z} | X € MF(x)}.

Clearly, for each two termsets Y, Z in AC(x), Y differs from Z by at least one
term and vice versa. In spite of this, Y and Z may indicate the same meaning of x
in reality. Let y be a term in Y\ Z and z be a term in Z\Y and {zyz} be a termset
the support of which is significantly less than the supports of Y and Z. This may
suggest that Y and Z probably represent different meanings of x. Otherwise, Y
and Z are likely to represent the same meaning of x. Please, note that {zyz}
plays a role of a potential discriminant for pairs of atomic contexts. The set of
all potential discriminants for Y and Z in AC(x) will be denoted by D(z,Y, Z):

D(z,Y,Z)={{zyz} lye Y\Z ANz € Z\Y}.

Among the potential discriminants, those which are relatively infrequent are
called proper discriminants. Formally, the set of all proper discriminants for Y
and Z in AC(z) will be denoted by PD(x,Y, Z), and defined as follows:

PD(z,Y,Z) ={X € D(x,Y, Z) | relSup(z, X,Y,Z) < 6}, where

relSup(z, X,Y, Z) = sup(X)/min(sup(zY), sup(zZ)), and
¢ is a user — defined threshold.

In the sequel, relSup(x, X,Y, Z) is called a relative support of discriminant X
for term x with respect to atomic contexts Y and Z.

Our proposal of determining the groups of contexts representing separate
meanings of x is based on the introduced notion of proper discriminants for
pairs of atomic contexts.
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Atomic contexts Y and Z in AC(x) are called discriminable if there is at
least one proper discriminant in PD(x,Y, Z). Otherwise, Y and Z are called
indiscriminable.

A sense-discriminant context SDC(z, X) of = for termset X in AC(x) is de-
fined as the family of those termsets in AC(z) that are indiscriminable with X;
that is,

SDC(z, X) ={Y € AC(z) | PD(z, X,Y) = 0}.

Clearly, X € SDC(xz, X). Please, note that sense-discriminant contexts of x for
Y and Z, where Y # Z, may overlap, and in particular, may be equal.

The family of all distinct sense-discriminant contexts will be denoted by
FSDC(z):

FSDC(x) ={SDC(x,X) | X € AC(z)}.
Please, note that | FSDC(z) |<| AC(x) |.

A given term x is defined as a homonym candidate if the cardinality of
FSDC(z) is greater than 1. Final decision on homonymy is given to the user.
Let us also note that the more overlapping are distinct sense-discriminant con-
texts, the more difficult is reusing the contexts for the meaning recognition in
the mining procedures.

In order to illustrate the introduced concepts below we consider an example,
which is based on an experimentally prepared set of documents.

Example 1. A special repository has been built based on Google search en-
gine and the AMI-SME software [4]. For the term apple, the following maximal
frequent termsets have been found in the repository (see Table 1):

Table 1. Function Maximal frequent termsets for term apple (MF(apple))

Maximal frequent termset Support

apple species breeding 1100
apple eat 14000
apple genetics 1980
apple gmo 1480
apple,botanics 2510
apple cake 3600
apple genome 1800
apple motherboard 2500
apple mouse pad 2500
apple iphone 6000

From this table we can evaluate the set of atomic contents, which is:

AC (apple) = {{species, breeding}, {eat}, {genetics}, {gmo}, {botanics}, {cake},
{genome}, {motherboard}, {mouse, pad}, {iphone}}.

Given the threshold § = 0.2, we can evaluate the set of proper discriminants from
the set of the potential discriminants {apple, z,y}. For instance, for the atomic
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contexts Y and Z such that Y = {species,breeding} and Z = {motherboard},
we have the following potential discriminants D(apple,Y, Z) = {{apple, species,
motherboard}, {apple, breeding, motherboard}}. Given the supports of the po-
tential discriminants (see Table 2): sup({apple, species, motherboard}) = 209
and sup({apple, breeding, motherboard}) = 78, we can calculate their relative
supports with respect to the supports of Y and Z as follows:

e relSup(apple, {apple, species, motherboard},Y, Z) =
sup({apple, species, motherboard})/
mian(sup({apple, species, breeding}), sup(apple, motherboard)) =
209 /min(1100, 2500) = 0.19;

e relSup(apple, {apple, breeding, motherboard},Y, Z) =
sup({apple, breeding, motherboard})/
min(sup({apple, species, breeding}), sup(apple, motherboard)) =
78 /min(1100, 2500) = 0.07.

Both discriminants {apple, species, motherboard} and {apple, breeding,
motherboard} have been found as proper, since their relative supports are below
the threshold § . The set of all proper discriminants is provided in Table 2.

Table 2. Proper discriminants

PD Support Relative support
Apple,species,motherboard 209 209/1100=0.19
Apple,breeding, motherboard 78 78/1100=0.07
Apple,eat motherboard 307 307/2500=0.12
Apple, botanics motherboard 68  68/2500=0.03
Apple,botanics,mouse 482 482/2500=0.19
Apple genome motherboard 74 74/1800=0.04
Apple genome pad 192 192/1800=0.10
Apple gmo motherboard 25  25/1800=0.10
Apple, breeding, iphone 0  0/1100=0.00
Apple, botanics, iphone 209 209/2500=0.08

For this set of proper discriminants we have found two sense-discriminant
contexts for the term apple:

FSDC(apple) = {{{species, breeding}, {eat}, {genetics}, {gmo}, {botanics},
{cake}}, {apple, motherboard, mouse, pad, iphone}}. O

4 Homonyms Discovering Procedure

The procedure for discovering homonyms and homograms have been imple-
mented within a specialized text mining platform TOM, which has been built
at Warsaw University of Technology with the aim to support ontology mainte-
nance and building with text mining techniques [T4[T5]. TOM provides a variety
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of tools for text preprocessing. In addition, in various text mining experiments
there may be different needs for defining a text unit. We have therefore intro-
duced an option for defining granularity of the text mining process. In particular,
TOM allows viewing the whole corpus as a set of documents, paragraphs or sen-
tences. For example, for the experiments aiming at discovering compound terms
[14], or synonyms [I5] the granularity was set to the sentence level. For dis-
covering homonyms and homograms we have performed experiments with the
granularity level set at the paragraph level.

Text preprocessing phase
The text preprocessing phase has been performed with TOM. As for the ex-
periments of discovering homonyms, the granularity was set at the paragraph
level, the first step was to generate a set of paragraphs from all the documents
in the repository. It means that the context of particular terms is restricted to
the paragraphs.

Then we have used the Hepple tagger [7] for part-of-speech tagging of the
words in the sentences. In TOM, the tagger is a wrapped code of the Gate part
of speech processing resource [5].

Conversion into “transactional database”

The next step is to convert the text corpora into “transactional database” (in
terms of [I]). So, every unit of text (i.e. every paragraph) is converted into a
transaction containing a set of terms identifiers. The usage of terms identifiers
instead of terms themselves leads to speeding up all the data mining operations.
Further on, the identifiers of all terms that do not have required minimum sup-
port are deleted from all the transactions.

Finding maximal termsets

Having reduced transaction representation of the text, we find the maximal fre-
quent termsets M F(x) for all terms x from the list of terms of interest by means
of any efficient data mining algorithm discovering maximal frequent itemsets [I§].

Identification of the sense-discriminant contexts

Having M F(z) for each term x, we calculate the atomic contexts AC(x) by
simple removal of = from each termset in M F'(x). For later use, for each atomic
context X in AC(x), we store the support of the maximal frequent termset xX,
from which X was derived. Now, we create potential discriminants for all the
pairs of atomic contexts. Then, from the set of potential discriminants, we search
for proper discriminants. This requires the calculation of the relative supports
of the potential discriminants based on the supports of termsets x.X, where
X € AC(x), and the supports of the potential discriminants themselves. While
the supports of termsets X, where X € AC(x), are already known, the supports
of the potential discriminants must be calculated. This is achieved with one scan
over the transaction dataset [I]. Eventually, we calculate all the distinct sense-
discriminant contexts for x. If the number of the distinct sense-discriminant
contexts for the term z is higher than 1, we classify x as a polysemous term with
the meanings determined by the contexts.
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5 Experiments

In order to evaluate the efficiency of the proposed algorithms we have performed
a number of experiments. In general, the found homonym candidates can be
classified into three different groups:

a) Same meaning: berlin
[ ontology, european, intelligence, th, proceedings, workshop, eds, conference,
learning, germany, artificial, august, ecai, hastings, wiemer- |
[ springer-, verlag |
b) Different meaning: background
[ domain, theory ]
[ web, pages |
c) Different use: results
[ table, taxonomy, phase, similarity, measures ]
[ information, users, queries |

In our case, we are interested in discovering words which belong to the second
and third group. The tests were done using different minimal support values
and part-of-speech tags. So far, better results were obtained with using smaller
values for the support threshold. As the aim was to find homonymous nouns,
only those were considered. As for the contexts we took into account nouns,
adjectives and verbs.

First, the tests have been performed on a repository composed of scientific
papers dealing with ontologies, semantic web and text mining. The results have
been rather modest, which can be justified by the fact that the scientific texts
in a limited domain use homogeneous and well defined terminology. Addition-
ally, the size of the repository was not sufficient for the experiments. Neverthe-
less, for the term background two sense discriminant contexts have been found
{domain, theory} and {web, pages}.

Another group of tests have been performed on the Reuters repository. In this
case the polysemous words are provided in Table 3.

Table 3. Results for the Reuters repository (the threshold set to 11 occurrences)

President chinese jiang zemin
hussein iraqi saddam
Ltd pictures seagram unit universal

corp murdoch news
percent shares worth
York consolidated exchange stock trading
city gate prices
France budget currency deficits
brazil cup world
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One can see an erroneous candidate president, which results from a shallow
semantic analysis of the text. With a deeper processing of the text (in this case
replacing the proper names by tokens) the candidate would be rejected.

The term york has two meanings — one with the stock, and another one with
the city. And with the third example, the term france has assigned the context
referring to the country (economic situation) and the national football team.

The third group of tests referred to a limited part of the repository from the
FAOLEX database [3], composed of the national legislations of various countries
in the area of agriculture and food technologies. Two spectacular discovered
examples are presented in Table 4.

Table 4. Results for the FAOLEX repository (the threshold set to 20 occurrences)

term Contexts discriminants
turkey {marketing production poults} {turkey Merriam production}
{Merriam,hunting,licence}
plant {protection}
{soil, pest, packaging}
{plant product organism} {Plant,meat,soil}
{meat processing}
{meat industries}

In the table one can see that in the FAOLEX repository the term turkey has
two meanings: one referring to the wild turkey (Merriam’s turkey subspecies,
named in 1900 in honor of C. Hart Merriam, the first chief of the US Biological
Survey), the other one referring to the domesticated bird, produced for meat. It
is worth to note that because of the specificity of the repository no discriminant
was found for the meaning Turkey as The Republic of Turkey. For the homogram
plant two meanings have been discovered: one related to the biological concept
(in FAOLEX found in the context of food and agriculture related activities), and
another one related to the “industrial factory” for “meat processing”.

Still there is a problem with evaluating recall of the method. To this end
we have decided to use the AMI-SME system [4] for building specific subject
oriented repositories, where a material for predefined homonyms and homograms
should be present. From a set of queries we have composed in the AMI-SME
system a repository aiming at checking the relevance of the idea, which was used
to find out meanings for the term apple (Example 1), and the term turkey. For
both terms the method has proven its efficiency. Now, we plan performing more
tests in order to determine the relevance and precision of the method.

6 Conclusions and Future Work

As said above, the tests were carried out on three repositories. As the results
have shown, the repository of scientific papers was not well suited for such
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experiments. The experiments with the Reuters repository have shown strong
dependency on the size of the repository. With the too small repository, the re-
sults are rather poor. With the extended repository, we were able to find more
polysemous words, on the other hand though, with too large repository we had
problems with the data mining algorithms. To this end we have decided to define
a priori a list of terms for which the experiment is run.

The results obtained so far show that the method presented above is able to
distinguish homonymous words correctly. A human expert can easily interpret
the contexts generated by the algorithms. Obviously there are among candidate
erroneous terms, one can also expect that there are some undiscovered. It results
from the following problems: (a) wrong part-of-speech tags assigned to the words
by the POSTagger; (b) the values set for the minimal support, which are too high,
but on the other hand, if lowered, caused memory problems; (¢) the repository
is too small and does not cover proper discriminants.
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Abstract. Research on automatic identification of musical instrument
sounds has already been performed through last years, but mainly for
monophonic singular sounds. In this paper we work on identification of
musical instrument in polyphonic environment, with added accompany-
ing orchestral sounds for the training purposes, and using mixes of two
instrument sounds for testing. Four instruments of definite pitch has
been used. For training purposes, these sounds were mixed with orches-
tral recordings of various levels, diminished with respect to the original
recording level. The level of sounds added for testing purposes was also
diminished with respect to the original recording level, in order to assure
that the investigated instrument actually produced the sound dominat-
ing in the recording. The experiments have been performed using WEKA
classification software.

1 Introduction

Recognition of musical instrument sound from audio files is not a new topic and
research in this area has already been performed worldwide by various groups of
scientists, see for example [2], [3], [], [6], [T, [9], [TT], [I4], [21]. This research was
mainly performed on singular monophonic sounds, and in this case the recogni-
tion is quite successful, with the accuracy level at about 70% for a dozen or more
instruments, and exceeding 90% for a few instruments (up to 100% correctness).
However, the recognition of instrument, or instruments, in polyphonic recording
is much more difficult, especially when no spatial clues are used to locate the
sound source and thus facilitate the task [20]. The research has already been
performed to separate instruments from polyphonic, poly-tymbral recordings,
and to recognize instruments in a noisy environment [6], [I3]. The noises added
to the recording included noises recorded in the museum (footsteps, talking and
clatter), wind gusts, old air-conditioner, and steam factory engine. Therefore,
some of the noises were rather unnatural to meet in real recordings. Our idea
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was to imitate the sounds found in real recordings, so we decided to use sounds
of other musical instruments, or of the orchestra.

In our paper we aim at training classifiers for the purpose of recognition of
predominant musical instrument sound, using various sets of training data. We
believe that using for training not only clean singular monophonic musical in-
strument sound samples, but also the sounds with added other accompanying
sounds, may improve classification quality. We are interested in checking how
various levels of accompanying sounds (distorting the original sound waves) in-
fluence correctness of classification of predominant (louder) instrument in mixes
containing two instrumental sounds.

2 Sound Parameterization

Audio data, for example files of .wav or .snd type, represent a sequence of sam-
ples for each recorded channel, where each sample is a digital representation
of amplitude of digitized sound. Such sound data are usually parameterized
for sound classification purposes, using various features describing temporal,
spectral, and spectral-temporal properties of sounds. Features implemented in
the worldwide research on musical instrument sound recognition so far include
parameters based on DFT, wavelet analysis, MFCC (Mel-Frequency Cepstral
Coefficients), MSA (Multidimensional Analysis Scaling) trajectories, and so on
131, [4], [9], [11], [14], [21]. Also, MPEG-7 sound descriptors can be applied [10],
although these parameters are not dedicated to recognition of particular instru-
ments in recordings.

We are aware that the choice of the feature vector is important for the success
of classification process, and that the results may vary if a different feature vector
is used for the training of any classifier. Therefore, we decided to use the feature
vector already used in a similar research, which yielded good results for musical
instrument identification for monophonic sounds [23]. We applied the following
219 parameters, based mainly on MPEG-7 audio descriptors, and also other
parameters used for musical instrument sound identification purposes [23]:

— MPEG-7 audio descriptors [10], [16]:

o AudioSpectrumSpread - a RMS value of the deviation of the Log fre-
quency power spectrum with respect to the gravity center in a frame;
averaged over all analyzed frames for a given sound;

o AudioSpectrumFlatness, flaty, ..., flatas - describes the flatness prop-
erty of the power spectrum within a frequency bin; 25 out of 32 frequency
bands were used to calculate these parameters for each frame; averaged
over all frames for a given sound;

o AudioSpectrumCentroid - computed as power weighted average of the
frequency bins in the power spectrum of all the frames in a sound with
a Welch method,;

o AudioSpectrumBasis: basisy,...,basisigs - spectrum basis function is
used to reduce the dimensionality by projecting the spectrum of the an-
alyzed frame from high dimensional space to low dimensional space with
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compact salient statistical information; results averaged over all frames
of the sound. Spectral basis parameters are calculated for the spectrum
basis functions, where total number of sub-spaces in basis function is 33,
and for each sub-space, minimum/maximum/mean/distance/ standard
deviation are extracted to flat the vector data. Distance is calculated as
the summation of dissimilarity (absolute difference of values) of every
pair of coordinates in the vector;

HarmonicSpectralCentroid - the average over the sound duration of
the instantaneous Harmonic Centroid within a frame. The instantaneous
Harmonic Spectral Centroid is computed as the amplitude (in linear
scale) weighted mean of the harmonic peak of the spectrum;
HarmonicSpectral Spread - the average over the sound duration of the
instantaneous harmonic spectral spread of a frame, i.e. the amplitude
weighted standard deviation of the harmonic peaks of the spectrum with
respect to the instantaneous harmonic spectral centroid;
HarmonicSpectralVariation - mean value over the sound duration of
the instantaneous harmonic spectral variation, i.e. the normalized cor-
relation between the amplitude of the harmonic peaks of two adjacent
frames;

HarmonicSpectral Deviation - the average over the sound duration of
the instantaneous harmonic spectral deviation in each frame, i.e. the
spectral deviation of the log amplitude components from a global spectral
envelope;

LogAttackTime - the decimal logarithm of the duration from the be-
ginning of the signal to the time when it reaches its maximum or its
sustained part, whichever comes first;

TemporalCentroid - energy weighted mean of the duration of the sound
- represents where in time the energy of the sound is focused;

— other audio descriptors:

Energy - average energy of spectrum in the entire sound;
MFCC - min, max, mean, distance, and standard deviation of the
MFCC vector; averaged over all frames of the sound;

o ZeroCrossingDensity, averaged through all frames of the sound;
e RollOff - measure of spectral shape, used in the speech recognition,

where it is used to distinguish between voiced and unvoiced speech. The
roll-off is defined as the frequency below which an experimentally chosen
percentage of the accumulated magnitudes of the spectrum is concen-
trated; averaged over all frames of the sound;

Fluz - the difference between the magnitude of the FFT points in a
given frame and its successive frame (value multiplied by 107 to comply
with WEKA requirements); value averaged over all frames of the sound;

o AverageFundamental Frequency;
o TristimulusParameters: trisy, ..., tris11 - describe the ratio of the am-

plitude of a harmonic partial to the total harmonic partials (average for
the entire sound); attributes based on [I7].
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Frame-based parameters are represented as average value of the attribute cal-
culated using sliding analysis window, moved through the entire sound. The
calculations were performed using 120 ms analyzing frame with Hamming win-
dow and hop size 40 ms. Such a long analyzing frame allows analysis even of
the lowest sounds. In the described research, data from the left channel of stereo
sounds were taken for parameterization.

The parameters presented above describe basic spectral, timbral spectral and
temporal audio properties, incorporated into the MPEG-7 standard. Also, spec-
tral basis descriptor from MPEG-7 was used. This attribute is actually a non-
scalar one - spectral basis is a series of basis functions derived from the singular
value decomposition of a normalized power spectrum. Therefore, a few other
features were derived from the spectral basis attribute, to avoid too high di-
mensionality of the feature vector. Other attributes include time-domain and
spectrum-domain properties of sound, commonly used in audio research, espe-
cially for music data.

3 Experiments

The goal of our research was to check how modification (i.e. sound mixing) of the
initial audio data, representing musical instrument sounds, influences the quality
of classifiers trained to recognize these instruments. The initial data were taken
from McGill University CDs, used worldwide in research on music instrument
sounds [I5]. The sounds where recorded stereo with 44.1 kHz sampling rate, and
16 bit resolution. We have chosen 188 sounds of the following instruments (i.e.
representing 4 classes):

B-flat clarinet - 37 sound objects,

C-trumpet (also trumpet muted, mute Harmon with stem out) - 65 objects,
violin vibrato - 42 objects

cello vibrato - 43 objects.

=W

The sounds were parameterized as described in the previous section, thus
yielding the clean data for further work. Next, the clean data were distorted in
such a way that an excerpt from orchestral recording was added. We initially
planned to use the recordings of the chords constant in time (for a few seconds,
i.e. as long as the singular sounds from the MUMS recordings), but it is not
so easy and fast to find such chords. Finally, we decided to use Adagio from
Symphony No. 6 in B minor, Op. 74, Pathetique by P. Tchaikovsky for this
purpose. Four short excerpts from this symphony were diminished to 10%, 20%,
30%, 40% and 50% of original amplitude, and added to the initial sound data,
thus yielding 5 versions of distorted data, used for training of classifiers. Those
disturbing data were changing in time, but since the parameterization was per-
formed applying short analysis window, we did not decide to search through
numerous recordings for excerpts with stable spectra (i.e. long lasting chords),
especially that the main harmonic contents was relatively stable in the chosen
excerpts.
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For testing purposes, all clean singular sound objects were mixed with the
following 4 sounds:

1. C4 sound of c-trumpet,

2. A4 sound of clarinet,

3. D5 sound of violin vibrato
4. G3 sound of cello vibrato,

where A4 = 440 Hz (i.e. MIDI notation is used for pitch). The added sounds
represent various pitches and octaves, and various groups of musical instruments
of definite pitch: brass, woodwinds, and stringed instruments producing both low
and high pitched sounds. The amplitude of these added 4 sounds was diminished
to 10% of the original level, to make sure that the recognized instrument is
actually the main, dominating sound in the mixed recording.

As one can see, we decided to use different data for training and for recognition
purposes. Therefore, we could check how classifiers perform on unseen data.

The experiments performed worldwide on musical instrument sounds, so far,
mainly focused on monophonic sounds, and numerous classifiers were used for
this purpose. The applied classifiers include Bayes decision rules, K-Nearest
Neighbor (k-NN) algorithm, statistical pattern-recognition techniques, neural
networks, decision trees, rough set based algorithms, Hidden Markov Models
(HMM) and Support Vector Machines (SVM) [11, [, 5], [, [8], [9], [11], [12],
[14], [19], [22]. The research on musical instrument recognition in polyphonic en-
vironment (without spacial clues) is more recent, and so far just a few classifiers
were used for the identification of instruments (or separation) from poly-timbral
recordings, including Bayesian, decision trees, artificial neural networks and some
others [6], [13]. In our experiments, we decided to use WEKA (Waikato Envi-
ronment for Knowledge Analysis) software for classification purposes, with the
following classifiers: Bayesian Network, decision trees (Tree J48), Logistic Re-
gression Model (LRM), and Locally Weighted Learning (LWL) [I§]. Standard
settings of the classifiers were used. The training of each classifier was performed
three-fold, separately for each level of the accompanying orchestral sound (i.e.
for 10%, 20%, 30%, 40%, and 50%):

— on clean singular sound data only (singular instrument sounds)

— on both singular and accompanied sound data (i.e. mixed with orchestral
recording)

— on accompanied sound data only

In each case, the testing was performed on the data obtained via mixing of
the initial clean data with other instrument sound (diminished to 10% of original
amplitude), as described above.

Summary of results for all these experiments is presented in Tables 1-4.

The improvement of correctness for each classifier, trained on both clean sin-
gular sound and accompanied sound data, in comparison with the training on
clean singular sound data only, is presented in Figure[Il Negative values indicate
decrease of correctness, when the mixes with accompanied sounds were added
to the training set.
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Table 1. Results of experiments for Bayesian network

Classifier | Added sound level Training on data: Correctness %
Singular sounds only 73,14%
10% Both singular and accompanied sounds 81,91%
Accompanied sounds only 77,53%
Singular sounds only 73,14%
20% Both singular and accompanied sounds 76,20%
Accompanied sounds only 69,41%
Singular sounds only 73,14%
BayesNet 30% Both singular and accompanied sounds 77,39%
Accompanied sounds only 63,56%
Singular sounds only 73,14%
40% Both singular and accompanied sounds 75,40%
Accompanied sounds only 60,77%
Singular sounds only 73,14%
50% Both singular and accompanied sounds 75,93%
Accompanied sounds only 55,98%

Table 2. Results of experiments for decision trees (Tree J48)

Classifier | Added sound level Training on data: Correctness %
Singular sounds only 81,65%
10% Both singular and accompanied sounds 80,19%
Accompanied sounds only 74,47%
Singular sounds only 81,65%
20% Both singular and accompanied sounds 82,05%
Accompanied sounds only 58,78%
Singular sounds only 81,65%
TreeJ48 30% Both singular and accompanied sounds 83,64%
Accompanied sounds only 64,63%
Singular sounds only 81,65%
40% Both singular and accompanied sounds 66,49%
Accompanied sounds only 62,23%
Singular sounds only 81,65%
50% Both singular and accompanied sounds 76,86%
Accompanied sounds only 50,53%

As we can see, for LWL classifier adding mixes with the accompanying sounds
to the training data always caused decrease of the correctness of the instrument
recognition. However, in most other cases (apart from decision trees) we observe
improvement of classification correctness, when mixed sound data are added to

the training set.
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Table 3. Results of experiments for Logistic Regression Model

Classifier | Added sound level Training on data: Correctness %

Singular sounds only 78,99%

10% Both singular and accompanied sounds 84,31%

Accompanied sounds only 67,95%

Singular sounds only 78,99%

20% Both singular and accompanied sounds 88,56%

Accompanied sounds only 64,23%

Singular sounds only 78,99%

Logistic 30% Both singular and accompanied sounds 84,84%
Accompanied sounds only 63,16%

Singular sounds only 78,99%

40% Both singular and accompanied sounds 85,77%

Accompanied sounds only 53,06%

Singular sounds only 78,99%

50% Both singular and accompanied sounds 87,37%

Accompanied sounds only 49,20%

Table 4. Results of experiments for Locally Weighted Learning

Classifier | Added sound level Training on data: Correctness %

Singular sounds only 68,35%

10% Both singular and accompanied sounds 67,02%

Accompanied sounds only 66,62%

Singular sounds only 68,35%

20% Both singular and accompanied sounds 67,15%

Accompanied sounds only 67,55%

Singular sounds only 68,35%

LwL 30% Both singular and accompanied sounds 62,10%
Accompanied sounds only 62,37%

Singular sounds only 68,35%

40% Both singular and accompanied sounds 62,37%

Accompanied sounds only 61,70%

Singular sounds only 68,35%

50% Both singular and accompanied sounds 53,86%

Accompanied sounds only 53,86%

The improvement of correctness for our classifiers, but trained on mixed sound
data only, in comparison with the training on clean singular sound data only, is
presented in Figure

As we can see, in this case the accuracy of classification almost always de-
creases, and we only have improvement of correctness for low levels of



100 A. Wieczorkowska and E. Kolczyniska

15% 4
10% 4

5%

0% l

BayesNet Logistic

-5%

-10%

-15% A

-20% -

Fig. 1. Change of correctness of musical instrument sound recognition for classifiers
built on both clean singular musical instrument sound and accompanied sound data, i.e.
with added (mixed) orchestral excerpt of various levels (10%, 20%, 30%, 40%, 50% of
original amplitude), and tested on the data distorted through adding other instrument
sound to the initial clean sound data. Comparison is made with respect to the results
obtained for classifiers trained on clean singular sound data only.

accompanying sounds for the Bayesian network. Therefore we can conclude that
clean singular sound data are rather necessary to train classifiers for instrument
recognition purposes.

We are aware that the results may depend on the instruments used, and a
different choice of instruments may produce different results. Additionally, the
loudness of each sounds (both the sounds of interest and accompanying sounds)
changes in time, so it may also obfuscate the results of experiments. Also, decision
trees are not immune to noise in the data, and since the addition of other sounds
can be considered as adding noise to the data, the results are not as good as in
case of clean monophonic sounds.

When starting these experiments, we hoped to observe some dependencies
between the added disturbances (i.e. accompanying sounds) to the training sound
data, the level of the disturbance, and change of the classification correctness.
As we can see, there are no such clear linear dependencies. On the other hand,
the type of the disturbance/accompaniment (for example, its harmonic contents,
and how it overlaps with the initial sound) may also influence the results. Also,
when sound mixes were produced, both sounds in any mix were changing in time,
what is natural and unavoidable in case of music. Therefore, in some frames the
disturbing, accompanying sounds could be louder than the sound of interest,
so mistakes regarding identification of the dominant instrument in the mix also
may happen as well.
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Fig. 2. Change of correctness of musical instrument sound recognition for classifiers
built on the mixed sounds, i.e. of singular instruments with added orchestral excerpt
of various levels (10%, 20%, 30%, 40%, 50% of original amplitude), and tested on the
data with added other instrument sound to the main instrument sound. Comparison
is made with respect to the results obtained for classifiers trained on clean singular
sound data only.

4 Summary and Conclusions

The experiments described in this paper aimed at observing if (and how) adding
disturbance (i.e. accompanying sound added) to the clean musical instrument
sound data influences correctness of classification of the instrument, dominating
in the polyphonic recording. The clean data represented singular musical instru-
ment sounds of definite pitch and harmonic spectrum. The disturbances added
represented various levels of orchestral recordings, added to singular monophonic
musical instrument sounds. Tests performed on pairs of instruments sounds have
shown that in most cases the use of disturbed (mixed) data, together with ini-
tial clean singular sound data, increases the correctness of the classifier, thus
increasing its quality. However, no clear linear relationships can be observed.
The results for using only distorted data for training showed that clean data are
necessary for training purposes.

We plan to continue our experiments, with using various levels of added or-
chestral sounds for training and for testing the classifiers. Also, since the set of
sound features is very important for the correct classification, we plan to check
how changes in the feature set influence the quality of classification for distorted
in such a way data set.
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Abstract. The high volume of digital music recordings in the inter-
net repositories has brought a tremendous need for a cooperative rec-
ommendation system to help users to find their favorite music pieces.
Music instrument identification is one of the important subtasks of a
content-based automatic indexing, for which authors developed novel
new temporal features and built a multi-hierarchical decision system S
with all the low-level MPEGT descriptors as well as other popular de-
scriptors for describing music sound objects. The decision attributes in
S are hierarchical and they include Hornbostel-Sachs classification and
generalization by articulation. The information richness hidden in these
descriptors has strong implication on the confidence of classifiers built
from S. Rule-based classifiers give us approximate definitions of values
of decision attributes and they are used as a tool by content-based Au-
tomatic Indexing Systems (AILS). Hierarchical decision attributes allow
us to have the indexing done on different granularity levels of classes of
music instruments. We can identify not only the instruments playing in a
given music piece but also classes of instruments if the instrument level
identification fails. The quality of AILS can be verified using precision
and recall based on two interpretations: user and system-based [16]. ALS
engine follows system-based interpretation.

1 Introduction

The state of art technologies in semantic web and computer storage boost the
fast growing of music repositories throughout the internet, which in turn brought
the need for intelligent search methods and efficient recommendation systems to
help users to find their favorite music pieces.

Mining for knowledge in different representations of musical files (e.g., mu-
sic recordings, MIDI files, and music notes) involves very different techniques.
Research in MIDI files and music notes tackles problems in text mining. Digi-
tal recordings contain only sound signals unless manually labelled with seman-
tic descriptions (e.g., author, title, and company). Knowledge mining in digital
recordings requires prior retrieval of a large number of sound features from these
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© Springer-Verlag Berlin Heidelberg 2008
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musical sound signals. Timbre identification is one of the important subtasks for
mining digital recordings, where timbre is a quality of sound that distinguishes
one music instrument from another. Researchers in this area have investigated a
number of acoustical features to build computational model for timbre identifi-
cation. In this paper, authors focus on developing automated indexing solutions
for digital recordings based on MIR (Music Information Retrieval) techniques of
instruments and their types.

The real use of timbre-based grouping of music is very nicely discussed in [3].
Methods in research on automatic musical instrument sound classification go
back to the last few years. We review these methods with respect to monophonic
and polyphonic musical sounds.

For monophonic sounds, a number of acoustic features have been explored
in [I], []. Some of them are quite successful for certain classes of sound data
(monophonic, short, limited type of instruments). A digital multimedia file nor-
mally contains a huge amount of data, where subtle changes of sound amplitude
in time can be critical for human perception system, thus the data-driven tim-
bre identification process demands lots of information to be captured and also
demands to describe the patterns among those subtle changes. Since after the
dimensional approach to timbre description was proposed in [3], there is no stan-
dard parameterization used as a classification basis. Researchers in the area have
explored a number of statistical parameters to describe patterns and properties
of spectrums of music sounds to distinguish different timbre, such as Tristimulus
parameters [I4], [6], and irregularity [22], etc.

MPEG-7 standard provides a set of low-level temporal and spectral sound
features where some of them are in a form of vector or matrix of a large size.
Flattening and summarizing these features for traditional classifiers intuitively
increases the number of features but losses some potentially useful information.
Therefore, in this paper, authors have proposed a new set of features, sufficient in
musical timbre signatures and suitable in format for machine learning classifiers.
Authors compare them against popular features in the literature.

For polyphonic sounds, different methods have been investigated by various
researchers, such as Independent Component Analysis (ICA) ([§], [21]), Factorial
Hidden Markov Models (HMM) ([12], [19]), and Harmonic Sources Separation
Algorithms (2], [25], [9], [26]). ICA requires multiple channels of different sound
sources. Most often, HMM works well for sound sources separation where fun-
damental frequency range is small and the variation is subtle. Harmonic Sources
Separation Algorithms can be used to isolate sound sources within a single chan-
nel, where efficient solution in one channel can be intuitively applied to other
channels and therefore facilitates more types of sound recordings (e.g., mono-
channel and stereo with two or more channels).

Our multi-hierarchical decision system is a database of about 1,000,000 musi-
cal instrument sounds, each one represented as a vector of approximately 1,100
features. Each instrument sound is labelled by a corresponding instrument. There
are many ways to categorize music instruments, such as by playing methods, by
instrument type, or by other generalization concepts [23]. Any categorization
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process is usually represented as a hierarchical schema which can be used by an
automatic indexing system and a related cooperative Query Answering System
(QAS) [, [15], [I7]. By definition, a cooperative QAS is relaxing a failing query
with a goal to find its smallest generalization which does not fail. Two differ-
ent hierarchical schemas [I7] have been used as models of a decision attribute:
Hornbostel-Sachs classification of musical instruments and classification of mu-
sical instruments by articulation. Each hierarchical classification represents a
unique decision attribute, in a database of music instrument sounds, leading to
a construction of a new classifier and the same to a different system for automatic
indexing of music by instruments and their types [I7], [28].

2 Audio Features in Our Research

In their previous work, authors implemented aggregation [28] to the MPEG7
spectral descriptors as well as other popular sound features. This section in-
troduces new temporal features and other popular features used to describe
sound objects which we implemented in MIRAI database of music instruments
[http:/ /www.mir.uncc.edu]. The spectrum features have two different frequency
domains: Hz frequency and Mel frequency. Frame size was carefully designed to
be 120ms, so that the Oth octave G (the lowest pitch in our audio database)
can be detected. The hop size is 40ms with a overlapping of 80ms. Since the
sample frequency of all the music objects is 44,100Hz, the frame size is 5,292.
A hamming window is applied to all STF'T transforms to avoid jittering in the
spectrum.

2.1 Temporal Features Based on Pitch

Pitch trajectories of instruments behave very differently in time. The authors
designed parameters to capture the power change in time.

Pitch Trajectory Centroid. PC' is used to describe the center of gravity of

the power of the fundamental frequency during the quasi-steady state.
T )

(W) PO= " Ftengini gy

where P is the pitch trajectory in the quasi-steady state, n is the n** frame.

Pitch Trajectory Spread. PS is the RMS deviation of the pitch trajectory
with respect to its gravity center.

Slength(P) (¢ o —PC)2.P(n)]
(2) PS = \/ Lt b

Pitch Trajectory Max Angle. PM is an angle of the normalized power max-
imum vs. its normalized frame position along the trajectory in the quasi-steady
state.
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[ MAX(P(n))—P(0) ]
1 .Zlength(P) P(n)
_ length(P) Zen=1
(3) PM = F(n)—F(0)

( length(P) ]
where F(n) is the position of n'" frame in the steady state.

Harmonic Peak Relation. HR is a vector describing the relationship among
the harmonic partials.
(4) HR= 'y 1

T m j=1 Hg

where m is the total number of frames in the steady state, Hj is the 4" harmonic
peak in the " frame.

2.2 Aggregation Features

MPEG?T descriptors can be categorized into two types: temporal and spectral.
The authors applied aggregation among all the frames per music object for all
the following instantaneous spectral features.

MPEG?7 Spectrum Centroid [29] describes the center-of-gravity of a log-
frequency power spectrum. It economically indicates the pre-dominant frequency
range. Coefficients under 62.5Hz have been grouped together for fast computa-
tion.

MPEGT Spectrum Spread is the root of mean square value of the deviation
of the Log frequency power spectrum with respect to the gravity center in a
frame [29]. Like spectrum centroid, it is an economic way to describe the shape
of the power spectrum.

MPEGT Harmonic Centroid is computed as the average over the sound
segment duration of the instantaneous harmonic centroid within a frame [29].

The instantaneous harmonic spectral centroid is computed as the amplitude
in linear scale weighted mean of the harmonic peak of the spectrum.

MPEGT Harmonic Spread is computed as the average over the sound seg-
ment duration of the instantaneous harmonic spectral spread of frame [29].

The instantaneous harmonic spectral spread is computed as the amplitude
weighted standard deviation of the harmonic peaks of the spectrum with respect
to the instantaneous harmonic spectral centroid.

MPEGT Harmonic Variation is defined as the mean value over the sound
segment duration of the instantaneous harmonic spectral variation [29].

The instantaneous harmonic spectral variation is defined as the normalized
correlation between the amplitude of the harmonic peaks of two adjacent frames.

MPEGT Harmonic Deviation is computed as the average over the sound
segment duration of the instantaneous harmonic spectral deviation in each frame.

The instantaneous harmonic spectral deviation is computed as the spectral
deviation of the log amplitude components from a spectral envelope.
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MPEGT Harmonicity Rate is the proportion of harmonics in the power
spectrum. It describes the degree of harmonicity of a frame. It is computed
by the normalized correlation between the signal and a lagged representation of
the signal.

MPEGT Fundamental Frequency is the frequency that best explains the
periodicity of a signal. The ANSI definition of psycho-acoustical terminology
says that “pitch is an auditory attribute of a sound according to which sounds
can be ordered on a scale from low to high”.

MPEGT Upper Limit of Harmonicity describes the frequency beyond which
the spectrum cannot be considered harmonic. It is calculated based on the power
spectrum of the original and a comb-filtered signal.

Tristimulus and similar parameters describe the ratio of the amplitude of a
harmonic partial to the total harmonic partials [26]. They are first modified
tristimulus parameter, power difference of the first and the second tristimulus
parameter, grouped tristimulus of other harmonic partials, odd and even tris-
timulus parameters.

Brightness is calculated as the proportion of the weighted harmonic partials to
the harmonic spectrum [I0].
— Zi\]: [n-An)
) B =" A

Transient, steady and decay duration. In this research, the transient du-
ration is considered as the time to reach the quasi-steady state of fundamental
frequency. At this duration the sound contains more timbre information than
pitch information that is highly relevant to the fundamental frequency. Thus
differentiated harmonic descriptors values in time are calculated based on the
subtle change of the fundamental frequency [27].

Zero crossing counts the number of times that the signal sample data changes
signs in a frame [20]

(5) ZC; = 0.5 N, | sign(s;ln]) — sign(s;[n — 1]) |
(6) sign(x) = [if x > 0 then 1, else -1]
where s; is the nt" sample in the jt* frame, N is the frame size.
Spectrum Centroid describes the gravity center of the spectrum [24]
(7) €y = D SR ®)
X5 (k)

where N is the total number of the FFT points, X;(k) is the power of the kth
FFT point in the ith frame, f(k) is the corresponding frequency of the FFT
point.

Roll-off is a measure of spectral shape, which is used to distinguish between
voiced and unvoiced speech [TI]. The roll-off is defined as the frequency below
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which C' percentage of the accumulated magnitudes of the spectrum is concen-
trated, where C' is an empirical coefficient.

Flux is used to describe the spectral rate of change [I8]. It is computed by the
total difference between the magnitude of the FFT points in a frame and its
successive frame.

(8) Fy = S0, (| Xi(k) | — | X;oa(k) |)?

2.3 Statistical Parameters

In order to flatten the matrix data to suitable format for the classifiers, statistical
parameters (e.g., maximum, minimum, average, distance of similarity, standard
deviation) are applied to the power of each spectral band.

MPEGT Spectrum Flatness describes the flatness property of the power
spectrum within a frequency bin, which is ranged by edges in the corresponding
formula (see [29]). The value of each bin is treated as an attribute value in the
database. Since the octave resolution in our research is 1/4, the total number of
bands is 32.

MPEGT Spectrum Basis Functions are used to reduce the dimensionality
by projecting the spectrum from high dimensional space to low dimensional
space with compact salient statistical information (see [29]).

Mel Frequency Cepstral Coefficients describe the spectrum according to
the human perception system in the Mel scale. They are computed by grouping
the STFT points of each frame into a set of 40 coefficients by a set of 40 weighting
curves with logarithmic transform and a discrete cosine transform (DCT).

2.4 MPEGT Temporal Descriptors

The temporal descriptors in MPEGT [29] have been applied directly into the fea-
ture database. MPEGT Spectral Centroid is computed as the power weighted
average of the frequency bins in the power spectrum of all frames in a sound
segment with Welch method. MPEG7 Log Attack Time is defined as the
logarithm of the time duration between the time when the signal starts to the
time it reaches its stable part, where the signal envelope is estimated by comput-
ing the local mean square value of the signal amplitude in each frame. MPEGT7
Temporal Centroid is calculated as the time average over the energy envelope.

3 Discriminant Analysis for Feature Selection

Logistic regression model is a popular statistical approach of analyzing multi-
nomial response variables. It does not assume normally distributed conditional
attributes which can be continuous, discrete, dichotomous or a mix of any of
these; it can handle nonlinear relationships between the discrete responses and
the explanatory attributes. It has been widely used to investigate the relationship
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between decision attribute and conditional attributes, using the most economical
model. An ordinal response logit model has a form:

Pr(Y=i|x .
(9) (Pr()S:]nglll);E)) =q;+0;i-x,i=1,2,...,k

where the k + 1 possible responses have no natural ordering and aq,..., o are
k intercept parameters, (31,..., O are k vectors of parameters, and Y is the
response. For details, see [5]. The system fits a common slopes cumulative model
which is a parallel lines regression model based on the cumulative probabilities
of the response categories. The significance of an attribute is calculated with the
likelihood ratio or chi-square difference test by the Fisher’s Score algorithm. A
final model is selected, where adding another variable would not improve the
model significantly.

4 Experiments

The authors used a subset of their feature database [http://www.mir.uncc.edu]
containing 1,569 music recording sound objects of 74 instruments. The authors
discriminated instrument types on different levels of a classification tree. The
tree consists of three levels: the top level (e.g., aerophone, chordophone, and
idiophone), the second level (e.g., lip-vibrated, side, reed, composite, simple,
rubbed, shaken, and struck), and the third level (e.g., piano, violin, and flute).
All classifiers were 10-fold cross validation with a split of 90% training and 10%
testing. We used WEKA for all classifications and SAS LOGISTIC procedure
for discriminant analysis. In each experiment, a 99% confidence level was used.
Feature extraction was implemented in .NET C++ with connection to MS SQL
Server. In LISP notation, we used the following Music Instrument Classification
Tree:

(Instrument(Aerophone(Lip-vibrated (-,-,-), Side(-,-), Reed(-,-)),
Chordophone(Composite, Simple), Idiophone(Rubbed(-), Shaken(-,-),
Struck(-,-) )))

For classification on the first level in the music instrument family tree,
the selected feature set was stored in List I: {PeakRelation8, PeakRelation16,
PeakRelation24, MPEGFundFreq, MPEGHarmonicRate, MPEGULHarmonic-
ity, MPEGHarmoVariation, MPEGHarmoDeviation, MPEGFlat3, MPEGFIat8,
MPEGFlat18, MPEGFIlat30, MPEGFlat36, MPEGFlat46, MPEGFIlat55,
MPEGFlat56, MPEGFlat66, MPEGFlat67, MPEGFlat76, MPEGFIlat77,
MPEGFIat83, MPEGFIlat85, MPEGFIlat94, MPEGFIlat96, MPEGSpectrum
Centroid, MPEGTC, MPEGBasis59, MPEGBasis200, TristimulusRest, Zero-
Crossing, MFCCMaxBand1l, MFCCMaxBand3, MFCCMaxBand5, MFCCMax
Band6, MFCCMaxBand7, MFCCMaxBand8, MFCCMaxBand10, MFCCMax
Band13, MFCCMinBandl, MFCCMinBand13, PitchSpread, MaxAngle}. Ex-
periment was also performed on the rest of features after List I was removed
from the whole feature set, which was stored in List II. In the table below, “All”
stands for all the attributes used for classifier construction.
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Table 1. Results of three groups of features at the top level of the music family tree

Precision Recall
Class List I All List II List I All List II
Idiophone 87.00% 91.10% 95.10% 82.10% 91.40% 94.80%
Chordophone 86.80% 91.30% 88.50% 88.60% 88.90% 84.70%
Aerophone  91.50% 91.30% 87.30% 91.80% 93.50% 90.90%

Table 1 shows the precisions of the classifiers constructed with selected fea-
tures at the family level. After the less significant features, elected by the logistic
model, have been removed, the group of List I slightly improved the precision for
aerophone instruments. However, the selected significant feature group (List I)
significantly outperformed in precision for aerophone instruments and in recall
for both chordophone and aerophone instruments.

For classification at the second level in the music instrument family tree,
the selected feature set was stored in List I: {PeakRelation8, PeakRela-
tion16, PeakRelation30, MPEGFundFreq, MPEGHarmonicRate, MPEGULHar-
monicity, MPEGHarmoDeviation, MPEGFlat3, MPEGFlat1l, MPEGFlat14,
MPEGFIat18, MPEGFlat22, MPEGFlat26, MPEGFlat36, MPEGFIlat44,
MPEGFlat46, MPEGFlat58, MPEGFlat67, MPEGFlat81, MPEGFIlat82,
MPEGFIlat83, MPEGFlat85, MPEGFlat93, MPEGFlat94, MPEGFlat95,
MPEGSpectrumCentroid, MPEGTC, MPEGBasis50, MPEGBasis57, MPEG-
Basish9, MPEGBasis69, MPEGBasis73, MPEGBasis116, MPEGBasis167,
MPEGBasis206, Tristimulusl, TristimulusRest, TristimulusBright, ZeroCross-
ing, SpectrumCentroid2, RollOff, MFCCMaxBandl, MFCCMaxBand3,
MFCCMaxBand4, MFCCMaxBand6, MFCCMaxBand7, MFCCMaxBand9,
MFCCMinBand2, MFCCMinBand5, MFCCMinBand10, MFCCMinBand13,
MFCCAvgBand10, MFCCAvgBandl1, PitchSpread, MaxAngle}. Experiment
was also performed on List II obtained by removing List I from the whole
feature set.

Table 2 shows the precisions of the classifiers constructed with the selected
features, all features, and the rest of the features after selection at the second
level of the instrument family tree. After the less significant features, elected by

Table 2. Results of three groups of features at the second level of the music family tree

Precision Recall
Class List I All List II List I All List II
Lip — Vibrated 83.80% 84.40% 77.30% 84.70% 88.80% 82.30%
Side 74.30% 73.20% 66.40% 75.70% 64.00% 64.00%
Reed 77.10% 78.30% 70.50% 78.40% 80.10% 70.50%
Composite 84.50% 86.20% 84.90% 86.70% 84.30% 83.90%
Simple 71.20% 74.10% 72.20% 67.20% 80.00% 72.80%
Rubbed 85.30% 82.10% 75.00% 78.40% 86.50% 73.00%
Shaken 79.20% 91.00% 89.50% 64.80% 92.00% 87.50%

Struck 78.20% 86.30% 85.40% 80.40% 79.00% 77.60%
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Table 3. Results of three groups of features at the third level of the music family tree

Precision Recall
Class List I All List IT List I All List II
Flute 92.90% 67.70% 70.40% 89.70% 72.40% 65.50%
Tubular Bells 86.70% 60.00% 52.40% 72.20% 66.70% 61.10%
Tuba 85.70% 81.80% 85.70% 90.00% 90.00% 90.00%

ElectricBass 83.10% 87.50%
Trombone 80.60% 80.60%
79.20% 89.50%
Piano 78.50% 82.40%
FrenchHorn 78.00% 83.70%
BassFlute  77.40% 75.50%

Marimba

AltoFlute 76.70% 82.80%
DoubleBass 75.40% 60.80%
Piccolo 74.50% 69.20%
CTrumpet  72.00% 68.90%
Violin 71.00% 75.00%
Oboe 70.30% 71.00%

Vibraphone 69.30% 91.40%
68.80% 66.70%
Cello 67.00% 63.20%
Sazxophone  66.70% 51.70%

Bassoon

89.10% 80.60% 83.60% 85.10%
76.30% 69.20% 82.10% 74.40%
90.00% 71.40% 89.50% 86.50%
83.00% 81.60% 78.40% 74.40%
82.90% 87.70% 88.90% 84.00%
71.20% 68.30% 61.70% 61.70%
78.60% 79.30% 82.80% 75.90%
60.00% 75.40% 54.40% 52.60%
62.00% 71.70% 67.90% 58.50%
69.10% 83.10% 78.50% 72.30%
77.10% 78.00% 72.70% 76.50%
35.90% 81.30% 68.80% 43.80%
85.70% 73.20% 90.10% 93.00%
45.50% 61.10% 55.60% 27.80%
63.50% 61.50% 62.50% 68.80%
53.60% 46.70% 50.00% 50.00%

the logistic model, have been removed, the group of List I improved the precision
for side and rubbed instruments and recall for the side, composite, and struck
instruments. Also, the selected significant feature group (List I) significantly
outperformed in precision for lip-vibrated, side, reed, and rubbed instruments
and in recall for all the types except for simple and shaken instruments.

For classification at the third level in the music instrument family tree,
the selected feature set was stored in List I: {MPEGTristimulusOdd, MPEG-
FundFreq, MPEGULHarmonicity, MPEGHarmoVariation, MPEGFlatness6,
MPEGPFlatness14, MPEGFlatness27, MPEGFlatness35, MPEGFlatness43,
MPEGFlatness52, MPEGFlatness63, MPEGFlatness65, MPEGFIlatness66,
MPEGFlatness75, MPEGFlatness76, MPEGFlatness79, MPEGFIlatness90,
MPEGFlatness91, MPEGSpectrumCentroid, MPEGSpectrumSpread, MPEG-
Basis4l, MPEGBasis42, MPEGBasis69, MPEGBasis87, MPEGBasis138,
MPEGBasis157, MPEGBasis160, MPEGBasis170, MPEGBasis195, Tristim-
ulusBright, TristimulusEven, TristimulusMaxFd, ZeroCrossing, Spectrum-
Centroid2, Flux, MFCCMaxBand2, MFCCMaxBand3, MFCCMaxBand6,
MFCCMaxBand7, MFCCMaxBand9, MFCCMaxBand10, MFCCMinBandl,
MFCCMinBand2, MFCCMinBand3, MFCCMinBand6, MFCCMinBand7,
MFCCMinBand10, MFCCAvgBandl, MFCCAvgBand12, SteadyEnd, Length}.
Experiment was also performed on List IT obtained by removing List I from the
whole feature set.

Table 3 shows statistics of the precision of the classifiers constructed with the
selected features, all features, and the rest of the features for some instruments
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used in the experiment. The overall accuracy of all the features was slightly
better than that of the selected features. The computing time for List I, All, and
List IT is 7.33, 61.59, and 54.31 seconds respectively.

5 Conclusion and Future Work

A large number of attributes is generated in a table during fattening the fea-
tures into a single value attributes for classical classifiers by statistical and other
feature design methods. Some of the derived attributes may not significantly
contribute to the classification models, or sometimes may distract the classifica-
tion. In the light of the results from the experiments, we conclude that attributes
have different degree of influence on the classification performance for different
instrument families. The new temporal features related to harmonic peaks sig-
nificantly improved the classification performance when added into the database
with all other features. However, the new features were not suitable to replace
the MPEGT7 harmonic peak related features and Tristimulus parameters as the
logistic studies shows. We also noticed that classifications at a higher level of
granularity tended to use more features for correct prediction than those at the
lower level. This may especially benefit a cooperative query answering system
to choose suitable features for classifiers at different levels.
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Abstract. We present a new method of modeling of cluster structure
of a document collection and outline an approach to integrate additional
knowledge we have about the document collection like prior categoriza-
tion of some documents or user defined / deduced preferences in the
process of personalized document map creation.

1 Introduction

Web document clustering, especially in large and heterogeneous collections, is a
challenging task, both in terms of time and space complexity as well as resulting
clustering quality. But the most challenging aspect is the way how the clustering
information is conveyed to the end user and how it meets his expectations (so-
called personalization).

From the point of view of humans dealing with a given documents collection,
each document is rather a complex information structure. Further, a computer
system fully understanding the document contents is beyond technological pos-
sibilities. Therefore some kinds of “approximation” to the content are done.
When processed, documents are treated as “bags of words” or as points in term-
document vector space.

To get a deeper insight into the documents content and their mutual relation-
ships, more complex representations are investigated. Particularly, a new form of
cluster description — a visual document map representation has been proposed
and developed [I3IT4T6I8]. In a two-dimensional space, divided into quadratic
or hexagonal cells, the split into clusters is represented as an assignment of docu-
ments to cells in such a way, that documents assigned to cells are as homogenous
as possible and cells (clusters) containing similar documents are placed close to
one another on the map, and map regions are labeled with best-fitting terms
from the documents. An inversion of the clustering (that is clustering of terms
instead of documents) is also possible.

It is generally believed that individual information needs of users may differ
and there is a general feeling that therefore also the data processing results

Z.W. Ra$, S. Tsumoto, and D. Zighed (Eds.): MCD 2007, LNAI 4944, pp. 116 2008.
© Springer-Verlag Berlin Heidelberg 2008
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should accommodate to the profile of a specific user. Countless methods and
ways of user profile representation and acquisition have been designed so far.

The problem with map-like representation of document collections, however,
relies upon expensive processing / high complexity (in terms of time and space),
so that a personalized ad-hoc representation is virtually impossible.

In this paper we contest this view and claim that personalization of map rep-
resentation of large scale document collections is possible by a careful separation
of the concept of individual needs from the concept of common knowledge. This
leads to the possibility of separation of computationally intense tasks of iden-
tification of the structure of clustering space from the relatively less resource
consuming pure presentation part.

The paper is organized as follows: In section [2] the concept of cluster space
is introduced. Section [3] describes practical ways of cluster space approximation
from data. Section Ml outlines possible ways of personalizing the maps presenta-
tion. The experimental section [f] presents some evidence justifying utility of the
idea of contextual clustering for practical purposeﬂ. Last section, [l summarizes
the paper.

2 Clustering Space

It is usually assumed that personalization is needed because of cultural, ethnical
ete. differences that influence the “world of values”, the “attitudes” and the
“views”

So, in the particular case of clustering, the differences (or dissimilarities) be-
tween the objects may change from person to person, and — as a consequence —
personalization reduces to a total re-clustering of the objects.

Human beings possess to, a large extent, an “objectivised” world perception
which can be characterized by a common set of concepts (a vocabulary) that is
intended for them to communicate to other human beings. The vast majority of
concepts is shared and their meaning not determined by “values”, “attitudes”
etc. What differs the human beings, is the current needs they are focused on. So,
if discussing e.g. an issue in biology, one does not care about concepts important
for chemical engineering. Hence, not the personal attitude, but rather the context
in which an issue is discussed impacts the feeling of dissimilarity of “opinions”
(documents in our case).

! The paper is primarily concerned with outlining the general concept, while the
Reader may also refer to our earlier papers (e.g. [BI3I12]) for experimental results
supporting validity of partial clams from which the current exposition is derived.

2 This idea is particularly believed in the commercial world. See e.g. D. Gibson: New
Directions in e-Learning: Personalization, Simulation and Program Assessment.
ali.apple.com/ali media/Users/1000507/files/others/New Directions in
elearning.doc| or InterSight Technologies, Inc. information: iMatterTM Suite
- Customer Intelligence: Attitude and Behavior jwww.intersighttechnologies.
com/behavior/customer-behavior.html
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Therefore, in the sequel we will assume that the proper approach to per-
sonalization has to be well founded on the proper representation of document
information.

To keep the representation simple and manageable, we assume that docu-
ments are treated as bags of words (without bothering about words ordering
and sentence structure). They are represented in the space of documents (with
dimensions being spread by words and phrases, that is terms) as the points with
coordinates being a function of the frequency of terms occurring in these doc-
uments. Furthermore, it has been early recognized, that some terms should be
weighed more than other [I7], because of their varying importance. The similar-
ity between two documents is measured as a cosine of the angleﬁ between the
vectors drawn from the origin of the coordinate system to these points. It turns
out, that this vision of document similarity works quite well in practice, agreeing
with human view of text similarity. Furthermore, dimensionality reduction may
be of high importance [6] It is generally agreed that dropping the non-important
terms will not lead to any loss of information from human point of view, so that
one can ignore the respective dimensions, reducing frequently the computational
burden significantly, but also removing some “noise” in the data.

The weight w; 4 of a term ¢ in the document d may be, among others, cal-
culated as the so-called ¢fidf (term frequency times the inverse document fre-
quency) index:

D)

We,d = ft,a X log ) (1)
fp

where f; 4 is the number of occurrences of term ¢ in document d, |D| is the

cardinality of the set of documents, and fl()t) is the number of documents in
collection D containing at least one occurrence of term ¢ (see also [15]).

Each document d is represented by a vector d = (wy,,.. .,wtm)7 where T'
is the set of terms. Usually, this vector is normalized, i.e. it is replaced by the
vector d' = (wj,,...,wy ) of unit length. In such a case d' can be viewed as a
point of the unit hyper-sphere.

2.1 From Clusters to a Continuous Clustering Space

On the traditional ¢ fidf, the weights of terms in a document are influenced by
their distribution in the entire document collection. But one would calculate
the weights by the very same method, but within any reasonable (homogenous)
cluster, the results would be usually different. This fact seems to be ignored by
most researchers.

So our first methodological step is to relax the rigid term weighing scheme
(called hereafter global weighting scheme) by introducing flexible, i.e. local

3 Let us draw the attention to the obvious fact that though cosine ranges from -1
to 1, it is never negative for traditional document representation, as term weights
are always chosen as non-negative values, hence the angle between documents never
exceeds 90°.
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scheme [5]. We want to enable local differentiation of term importance within
identified clusters (i.e. local context).

But we do not want to replace global term weighing scheme with a local
weighing scheme. Rather than this, we consider the impact of the documents
that are far away from cluster core, on the term weighing, as compared to the
close ones. Another important point is that the terms specific for a given cluster
should weight more than terms not specific for any cluster. Last not least, we
replace the notion of a cluster to the concept of clustering space. Each document
p, i.e. a point in unit hyper-sphere, can be treated as cluster center in a (“contin-
uous”) clustering space. We can then define, for each document d, a membership
function mg c(py in the style of fuzzy set membership function [2], for example

al
Moot = S wi(d) - wl(p) (2)
teT
that is the dot product of coordinates of the normalized document d’ and the
point p on the unit hyper-sphere. In this way we define a continuous function over
the unit hyper-sphere HS, which is finite everywhere. Therefore, there exists in
particular the integral My = fHS+ mq,c(p)dp, Where HST™ is the “positive quar-
ter” (with nonnegative coordinates) of the unit hyper—sphereﬁ. By restricting
ourselves to the integration over HS' we obtain values that are generally lower
for documents lying in the “corners” of HST (with a couple of distinguishing
significant terms), whereas those in the “middle” (that is containing only many
terms with uniformly low significance) will have higher value of the HS™ inte-
gral. Subsequently we will use the integral as a divisor, so that documents with
significant words would be promoted.
Given this, we can define the specificity s; ¢ of a term ¢ in a cluster C(p) as

2deD (fr.ama.c))
Je.0* Yaep Ma,cp)

st.op) = C(p)] 3)
where f; 4 is (as earlier) the number of occurrences of term ¢ in document d, f; p
is the number of occurrences of term ¢ in document collection D, and |C(p)| is
the “fuzzy cardinality” (“density”) of documents at point p, defined as

ICOI = naowm (4)

deD
where (14, ¢ is the normalized membership:
mq,c(p)

,LL , =
“ew) fHSJr M, C(p)dp

4 Mq,c(p) tends to decrease with the number of dimensions, but this has no serious
impact as it is later subject to normalization.

5 The reason, why we do not consider HS, but restrict ourselves to HS' is that
st Mgq,c(p)dp is independent of the document d: because of the symmetry of the unit
hyper-sphere it is equal to zero. As already said, documents (in most term-weighing
systems, see [7]) lie in HS™' and therefore only this part of the unit hyper-sphere is
of interest.
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In this way we arrive at a new (contextual [5]) term weighing formula for term
t in the document d from the point of view of the “local context” C(p)

[C(p)]

Wid,0(p) = $1,0(p) X fr.a X 10g " 4 ()
C(p)

where fg()p) is the fuzzy count of documents in collection C(p) containing at
least one occurrence of term t,

t
f((;()p)z . macw (6)

{d:ft,a>0}

For consistency, we assume that wy 4 c(p) = 0 if fg()p) =0.
The universal weight ¢fidf given by equation () will be replaced by the
concept of an “averaged” local weight

Jas+ Ma,c) - Wed,cm)dp (7)
Jus+ Ma,cm)dp

Note that the definition of term weights w; 4 becomes recursive in this way
(mg,c(p) is used here, which is computed in the equation () based on wy 4 itself)
and the fixpoint of this recursion is the intended meaning of term weight. While
we do not present here a mathematical proof of the existence of the fixpoint,
we show in the experimental section, that the iterative process converges, and it
converges to a useful state.

If we look at the process of creation of a document, then we see that the
same content could have been expressed in a slightly different way. So, one can
view the collection of documents as a sample generated from a complex (mixed)
probability distribution. Hence we can think that any point in H ST has a term
importance just as an instantiation of a random process with an underlying
mixture of distributions. And these distributions we want to consider as an
underlying feature of the clustering process, so that clusters are sets of points in
HS with “similar” term importance distribution.

W¢,d =

2.2 Histogram Characterization of a Context

Let us analyze the way how typical hierarchical (or other multistage) algorithms
handle lower level clusters. The cluster is viewed as a kind of “averaged” docu-
ment, eventually annotated with standard deviation of term frequencies and/or
term weights. In our opinion, the distribution (approximated in our approach
by a discrete histogram [4]) of the term weight (treated as a random variable)
reflects much better the linguistic nature of data than hyperspheres around some
center. Instead it creates clusters of documents with terms used in a similar way.
This was confirmed by our reclassification experiments [4], showing higher stabil-
ity of histogram-based cluster description versus centroid-based representatiorﬁ.

5 Reclassification measure evaluates consistency of the model-derived clustering with
the histogram-based clustering space description (cf. [4]).
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So for any point p in the clustering space HS™* and any term ¢ we define a
term-weight distribution as one approximated by the histogram in the following
manner: Let A(w’,t) be a discretization of the normalized weights for the term
t assigning a weight for a term the integer identifier of the interval it belongs to
(higher interval identifiers denote higher weights). Let x(d, ¢, ¢, p) be the charac-
teristic function of the term ¢ in the document d and the discretization interval
identifier ¢ at point p, equal to mg,c(p) if ¢ = A(w;’d)c(p),t), and equal zero
otherwise. Then the histogram h(t,p, q) is defined as

h(t,p,q) = Y x(dt,q,p) (8)

deD

With 2’ we denote a histogram normalized in such a way that the sum over all
intervals ¢ for a given ¢ and p is equal 1:

/ h(t,p,q)
W)= o (9)
For a more detailed exposition of the concept of histograms see [4].

We can easily come to the conclusion, when looking at typical term histograms
that terms significant for a cluster would be ones that do not occur too frequently
nor too rarely, have diversified range of values and have many non-zero intervals,
especially with high indices.

Hence the significance of term ¢ for the clustering point p may be defined as

-log (R (t, p,
S 2o la gcst (t.p,q))] (10)

where @Q; is the number of intervals for the term ¢ under discretization.

Let us denote with H(t,p,q) the “right cumulative” histograms, that is
H(t,p,q) = Zk>q h(t,p, k). The “right cumulative” histograms are deemed to
reflect the idea, that terms with more weight should be “more visible”. For
technical reasons H' is a histogram normalized in the same way as h'.

Let us measure the dissimilarity between clustering points p;, p; with respect
to term ¢ as

Helly(pi,pj,t) = \/Z (H'(t,ps, @) V/D—H (¢, p;, q) /9 (11)
q

known as Hellinger divergence, and also as Hellinger-Matsushita-Bhattacharya
divergence, [I]. Hellinger divergence, measuring dissimilarity between probability
distributions, is well-studied in the literature and frequently used, whenever
distributions are to be compared. Hells is known to behave like a proper distance.

Finally let us measure the dissimilarity between clustering points p;,p; by
“averaging over terms” as

2t Tu,C(pi),C(py) - Hellk(pi, pji t)

(12)
2ote M,C(p:),Clp;)

dst(pi,pj) =
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where
M4, (pi),C(py) = \/(mt,C(pi +1) - (meop) +1) —1

With this definition, we can speak of a general notion of a cluster as “islands”
in the clustering space such that the divergence within them differs insignifi-
cantly, and there exist at least n documents belonging predominantly to such an
island. Thus, it can be treated as a dissimilarity measure.

It may be easily deduced that equation () gives also interesting possibilities
of labeling of cluster space with meaningful sets of terms (concepts).

2.3 User-Related Sources of Information

Let us now turn to the user related information. Some documents may be pre-
labeled by the user (with category, liking), there may be past queries available.

Note that the contextual document space, as described in the previous section,
may be viewed as a “pure space” with some “material objects” causing a kind
of curvature of this space.

The user-related sources can be viewed as consisting of two types of “docu-
ments”: “material objects” (all the positively perceived, relevant information)
and the “anti-material objects” (all the negatively perceived information).

The user-related documents may be also represented in a clustering space, in
at least two different ways:

— In separate user-material, user-anti-material and proper document clustering
spaces - in this case a “superposition” of these spaces would serve as an
additional labeling of the proper document space, beside the original labels
derived from document collection content.

— In a joint space — in this case user-related information will transform the
document space of the document collection.

While the second approach may be considered as a stronger personalization,
it will be more resource consuming and raises the issue of pondering the impact
of user related documents against the entire collection, and also that of the
relation between positive and negative user information. The first approach will
be for sure much less resource consuming, because the processing of the big entire
document collection has to be done only once, and the user related information
is usually of marginal size and can be processed in a speedy way.

3 Clustering Space Approximation

In the previous section we equipped the clustering space with continuously
changing descriptors in terms of term importance distributions. Under this pro-
vision the traditional clusters may be viewed as an element of discrete approx-
imations of the clustering space. To represent the continuum more realistically,
relations between clusters have to be taken into account.

The approximation makes legitimate ignoring the usually wide areas of clus-
tering space of next to zero proximity to the documents as well as ignoring those
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terms that within the given subspace are of marginal significance. This is rea-
sonable as each document modifies the space close to it having marginal impact
of the rest. So the space may be greedy subdivided into non-empty subspaces
that are deemed to be linked if they adhere to one another, and not, if they are
of next to zero similarity.

The process, that we apply to approximate the clustering space [12], which
we call Adaptive Clustering Algorithm, starts with splitting of the document
collection into a set of roughly equally sized sub-collections using the expression
() as an approximation of term weights for document similarity computation in
a traditional clustering algorithm. We work in a hierarchical divisive mode, using
the algorithm to split the collection in a small number of subcollections and apply
further splitting to sub-collections of too big size. At the end too small clusters
are merged with most similar ones. As a next iteration for each sub-collection,
being now treated as a context (as it is now feasible), an iterative recomputation
of term weights according to equation ([f]) with respect to cluster center, making
the simplifying assumption that documents from other contexts have no impact.
Within each context, the dictionaries of terms are reduced removing insignificant
terms in a given context (different terms may be “zeroed” in different contexts).
Subsequently the inter-document structure is formed. For this purpose one of the
known networking clustering algorithms is used, either the growing neural gas
(GNG) [9] or idiotypic (artificial immune) network (aiNet) [I8)3]. Finally we turn
back to the global set of contexts and apply a networking clustering algorithm
to representatives of each context. This time, the histograms of contexts are
applied to compute a measure of similarity between contexts — see equation (I2).
While applying the networking clustering, we additionally compute so-called
“major topics”, that is a split of the (sub)collection into up to 6 sub-clusters,
the representatives of which are deemed to be major topics of the collection.

In this way, an approximation of the clustering space is obtained. In case of vi-
sualization, the WebSOM algorithm is applied to context representatives, in case
one wants to view the global map, and to neural gas cells, or immune network
cells in case of detailed view of a context. The computation of the map given the
clustering space model is drastically simplified because e.g. with a collection of
12,000,000 documents we need to cluster only 400 representatives. So given such
a cluster network, its projection onto a flat rigid document map structure, with
treating each whole cluster as a single “document”, is a dramatically simpler
task than the map creation process for individual documents.

Our implementation of WebSOM differs from the original one in a number of
ways, accelerating the processing significantly. One of the features is the topic-
sensitive initialization. While WebSOM assigns random initial cluster centers
for map cells, we distribute evenly the vectors of major topics over the map
and initialize the remaining cells with in-between values (with slight noise). In
this way the maps are learned usually quicker and are more stable (no drastic
changes from projection to projection).

We have demonstrated in our earlier work [34U5IT2] that such an approach to
document space modeling is stable, scalable and can be run in an incremental
manner.
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3.1 Exploiting User-Related Sources

With this background we can explain our approach to personalization. We treat
the document collection as a piece of knowledge that is esteemed by any user
in the same way. So the identified clusters and the identified interrelationships
between them are objective, independent of the user. The user at a given moment
may be, however, interested to view the collection from a different direction. So
the personalization may be reduced to the act of projection of the cluster network
onto the flat map, that is, contrary to projection of document collection, a speedy
process, to be managed within seconds. In this process, we can proceed in two
distinct ways:

— Instead of using the topical vectors of a context / global collection, the user
profile topical vector is applied, or

— The user related “documents” are attached to the collection clusters prior to
projection (and may or may not influence the projection process) and serve
as a source of additional labeling.

3.2 Another View of the Adaptive Clustering Algorithm

Our incremental textual data clustering algorithm relies on merging two known
paradigms of clustering: the fuzzy clustering and the subspace clustering. The
method differs essentially from Fuzzy C-Means in that it is designed solely for
text data and is based on contextual vector representation and histogram-based
description of vector subspaces.

Like Fuzzy-C-Means, we start with an initial split into subgroups, represented
by a matrix U(7p), rows of which represent documents, and columns representing
groups, they are assigned to. Iteratively, we adapt (a) the document representa-
tion, (b) the histogram description of contextual groups, (¢) membership degree
of documents and term significance in the individual groups.

These modifications can be viewed as a recursive relationship leading to a
precise description of a contextual subspace in terms of the membership degree
of documents and significance of terms in a context and on the other hand
improving the understanding of document similarity.

So we can start without any knowledge of document similarity, via a random
assignment of documents to a number of groups and global term weighing. But
through the iterative process some terms specific for a group would be strength-
ened, so that class membership of documents would be modified, hence also their
vector representation and indirectly similarity definition.

So we can view the algorithm as a kind of reinforcement learning. The usage
of histogram approach makes this method incremental.

4 Personalization

The outlined approach to document map oriented clustering enables personal-
ization among others along the following lines:
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— Personalized topic -oriented initialization of map like visualization of the
selected document space model (also rebuilding of a component model is
possible, treating the user profile as a modifier of term weights of all docu-
ments)

— Personalized identification of key words, document space / map cell labeling,
query expansion

— Document recommendation based on document membership degree in client
profile context

— Recommendation of map cells

— Recommendation of other users (measuring the histogram distances between
user profiles)

— Clustering of users as well as users and contexts

Present day search engines are characterized by a static information model,
that is textual data bases are updated in a heavily discontinuous way which
results in abrupt changes of query results (after each cycle of indexing new
documents). Also the data organization and search model does not take into
account the user profile information for the given document base and the given
user query. Hence the reply is frequently identical, independent of the user.

The experimental search engine BEATCA [12] exhibits several capabilities
that can become a starting point for a radical change of this situation.

— Reduced processing time, scalability of the adaptive contextual approach, re-
duced memory requirements of the implemented clustering algorithms (con-
textual reduction of the vector space) and search (inverted lists compression)

— Possibility of construction and maintenance of multiple models/maps repre-
senting diverse views of the same document collection (and fitting the map
to the query)

— Possibility of inclusion of system-user interaction history into the algorithm
of map initialization (e.g. by strengthening / weakening of terms from doc-
uments evaluated by the user as more or less interesting)

— Possibility of inclusion of user preference profiles into the modeling process
itself by taking into account the automatically collected information on user
walk through the collection or provided externally.

5 Experiments

5.1 Histogram-Based Clustering Quality Measure

Our new approach to document clustering introduces new aspect of evaluation
related to comparison of various clusterings constructed over partially different
subspaces of the document space. This issue can be partially resolved by applying
histogram-based statistics of term weighing function distributions

Both individual context groups and nodes of correctly built graph model (and
map cells) have to describe a consistent fragment of the vector space. This frag-
ment is related to a subset of the document collection (assigned to the context
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or the cell during model training). Document cluster used to be traditionally
represented by its central element (centroid, medoid, or a set of elements like in
CURE algorithm [10]). SOM and GNG models use so-called reference vector as
cell centroid, while immunological models use here individual antibody.

But another possibility to represent a group of documents is to describe it by
a set of histograms (one for each term in the document group), as described in
section 2l It turns out, that time and space cost of such a representation is low.
and we profit from departure from the assumption of spherical shape of vector
space fragments related to a single cluster (as centroidal representation assumes)
and from the possibility of dynamic modification of such a description when the
cluster membership changes.

We gain also a new way of construction of a measure evaluating the quality
of obtained clustering (both of the initial identification of contextual groups and
of various graph models, like GNG, aiNet).

In the experimental section we shall investigate the stability of groups ob-
tained in the clustering process (contexts and cells). Based on a fixed split we
investigate the histogram descriptions of each group and then reclassify all doc-
uments choosing for each document the cluster (cell or context) into which the
document belongs to the highest degree. Next the agreement of the new cluster-
ing with the clustering obtained in the process of model learning is checked.

5.2 Experimental Results

The idea of personalization promoted in this paper heavily assumes that the rela-
tionships are intrinsic and do not change under change of perspective. Therefore
we evaluated the stability of the split into clusters (contextual groups) in case of
the classical cluster representation based on fuzzified centroids (Fuzzy C-Means)
and based on histogram descriptions (Fuzzy C-Histograms). Evaluation tech-
nique was based on histogram reclassificatiorf] measure (see section [B.T)).

At the same time the quality of the histogram method itself was investigated
(its sensitivity to the number of histogram intervals). Influence of contextual
vector representation, based on weights w; 4, 0o and the global one, based on
tfidf was compared. We checked also the impact of dimensionality reduction
(number of different terms in the dictionary) and the number of intervals of
histograms describing the distribution of term weights on the results of reclas-
sification. We have also tested the impact of using contextual (frequent) phrases
(which are derived locally within the contexts in analogy to methods of global
phrase identification). Experiments were carried out for document collections 20
Newsgroups, 12 Newsgroups, WebKb and Reuters and the collection 100K Polish
Web containing 96908 pages from Polish Internet (see also [4]).

" Clustering methods generally attempt to make more or less local decisions when
assigning an element to a cluster. Instability of clustering under reclassification would
mean that the change of perspective from a local one to a global one rearranges the
cluster membership, or stated in a different way, the cluster membership is not the
intrinsic property of the document, but rather of the perspective.
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The results are presented in table[Il The best result was achieved for the full
contextual representation (with contextual phrases) for the set 20 Newsgroups,
for a dictionary reduced to 7363 terms. The reclassification quality was very
high (close to 100%) - 19937 documents out of 20000 were correctly classified.
The majority of 63 reclassification errors was caused by documents that did not
contain any significant term after the reduction of dictionary dimension (they
were classified into the default context marked as “null””). On the other hand, for
the standard method ¢ fidf only 90% of documents were correctly reclassified. It
is interesting that the reclassification based on less reduced dictionary (leaving
A dictionary of 15000 terms, that is twice as high as previously) leads to signif-
icantly worse result (85% correctly reclassified documents in case of contextual
representation). This confirms the hypothesis that the too many low quality
terms (their exponential explosion) may hide the inner structure of natural
clusters of the document collection. On the other hand introduction of term
weighting and contextual representation supports the reclassification capability.

In case of all other supervised collections significant differences between the
stability of clustering, when the clusters were represented by a single repre-
sentative (centroid, in the table Means) and the representation by histogram

Table 1. Stability of the structure of contextual groups: Reclassification measure

Reclassification 12News 20News Reuters WebKb 100K www
Means / tfidf 0.665 0.666 0.247 0.704 0.255
Means / w,q no phrases 0.743  0.938  0.608 0.752 0.503
Means / wyq + phrases 0.871  0.946 0.612 0.768 0.557
Histograms / tfidf 0.878 0.898 0.54  0.697 0.67
Hist. / w¢ 4 no phrases  0.926  0.988  0.849  0.98 0.829
Hist. / we¢,q + phrases 0.965 0.997 0.861 0.982 0.969

Table 2. Quality of histogram-based reclassification for the 12 Newsgroups collection

Histograms / w; 4 Precision Recall Category size Reclassification

“null” - - 0 55
comp.windows.x 0.992 0.961 408 421
rec.antiques.radio+photo  0.973  0.972 612 613
rec.models.rockets 0.923 0.971 999 950
rec.sport.baseball 0.96  0.985 999 974
rec.sport.hockey 0.98  0.942 365 380
sci.math 0.985 0.933 624 659
sci.med 0.96  0.981 326 319
sci.physics 0.96 0.974 861 849
soc.culture.israel 0.974  0.998 666 650
talk.politics.mideast 0.968 0.988 1000 979
talk.politics.misc 0.966  0.996 872 846

talk.religion.misc 0.977  0.885 357 394
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Table 3. Quality of centroid-based reclassification for the 12 Newsgroups collection

Centroids / tfidf  Precision Recall Category size Reclassification

“null” - - 0 55
comp.windows.x 0.629 0.883 408 291
rec.antiques.radio+photo  0.584  0.888 612 403
rec.models.rockets 0.762  0.598 999 1274
rec.sport.baseball 0.806  0.609 999 1322
rec.sport.hockey 0.358  0.85 365 154
sci.math 0.692 0.707 624 611
sci.med 0.226  0.961 326 7
sci.physics 0.774  0.545 861 1222
soc.culture.israel 0.597  0.929 666 428
talk.politics.mideast 0.849  0.548 1000 1548
talk.politics.misc 0.692  0.945 872 639
talk.religion.misc 0.131  0.723 357 65

descriptions. The differences were visible both for the global representation ¢ fidf
and the contextual representation, based on weights wy 4. Particularly important
was the impact of departure from the representation by a single gravity center
in case of those collections that consist of many fuzzy and thematically similar
categories with varying cardinality: Reuters and 100K Polish Web. In the case
of representation based on geometrical gravity centers this is related on the one
hand with the already mentioned inadequacy of the hyperbolical cluster shape
assumption, on the other hand to the overshadowing of low cardinality categories
by larger ones. For the 12 Newsgroups collection with lower number of categories
but with varying category cardinalities this is shown by the results in tables
and [Bl It is visible that for histogram-based representation the cluster stabil-
ity does not depend on their cardinality. For classical centroidal representation,
lower cardinality categories suffer from loss of precision, because the documents
originally belonging to them are reclassified into bigger contextual groups, rep-
resented by more general centroids. For the large groups, their recall is impaired,
for the clusters contain documents belonging to diverse categories.

The results for the largest collection discussed here, 96908 web pages from Pol-
ish Internet (100K Polish Web), support the claim of contextual approach. The
HTML documents were clustered into over 200 contexts with diverse cardinalities
(from several pages to over 2100 pages in a single context) so the reclassification
should not be easy. But the contextual weighting resulted in 93848 (97%) cor-
rectly reclassified pages, while the ¢ fidf weighting gave only 64859 (67%) pages.
The classical representation (centroidal with global weighting via ¢ fidf) of that
many contexts proved to be totally inadequate, leading to unstable clusters, not
reflecting topical similarity. In all cases the dictionary reduced via the histogram
method consisted of 42710 terms selected out of over 1,200,000.

In case of all document collections, both when dealing with centroidal clus-
ters and histogram-based clusters, we observed positive influence of contextual
phrases on the stability of clusters, though various document collections were
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affected to different degree, and in some cases (especially for Reuters collections)
it was marginal. This is clearly related to the quality of phrase identification it-
self, that is poor in case of Reuters collection of homogeneous economical news,
as phrases really differentiating clusters are hard to find.

Finally, the impact of the number of histogram intervals on the stability was
investigated. Obviously, a too low number of them would have a negative impact,
as we reduce then the histogram method to centroidal one. Hence we are not
surprised to have only 17374 correct reclassifications for contextual method with
3-interval histograms on the 20 Newsgroups ). But any higher meaningful number
of intervals lead to high quality reclassification: 19992 for 6-, 19997 for 10-,
19991 for 20-, 19937 for 50- and 19867 correct reclassifications for 100-interval
histograms). Similar results were observed for other collections. The lower the
number of documents and the lower the document diversity, the lower the number
of intervals has to be used to obtain high quality results. However, a too high
number of intervals may lead to a poorer approximation. Usage of cumulative
histograms may be cure here.

6 Conclusions

We presented a new concept of document cluster characterization via term (im-
portance) distribution histograms. This idea allows the clustering process to have
a deeper insight into the role played by each term in formation of a particular
cluster. So a full profit can be taken from our earlier idea of “contextual cluster-
ing”, that is of representing different document clusters in different subspaces of
a global vector space. Such an approach to mining high dimensional datasets
proved to be an effective solution to the problem of massive data clustering. Con-
textual approach leads to dynamic adaptation of the document representation,
enabling user-oriented, contextual data visualization as a major step on the way
to information retrieval personalization in map search engines.
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Abstract. The error reduction in generalization is one of the princi-
pal motivations of research in machine learning. Thus, a great number
of work is carried out on the classifiers aggregation methods in order
to improve generally, by voting techniques, the performance of a single
classifier. Among these methods of aggregation, we find the Boosting
which is most practical thanks to the adaptive update of the distribu-
tion of the examples aiming at increasing in an exponential way the
weight of the badly classified examples. However, this method is blamed
because of overfitting, and the convergence speed especially with noise.
In this study, we propose a new approach and modifications carried out
on the algorithm of AdaBoost. We will demonstrate that it is possible
to improve the performance of the Boosting, by exploiting assumptions
generated with the former iterations to correct the weights of the ex-
amples. An experimental study shows the interest of this new approach,
called hybrid approach.

Keywords: Machine learning, Data mining, Classification, Boosting,
Recall, convergence.

1 Introduction

The great emergence of the modern databases and their evolution in an expo-
nential way as well as the evolution of transmission systems result in a huge
mass of data which exceeds the human processing and understanding capabili-
ties. Certainly, these data are sources of relevant information and require means
of synthesis and interpretation. As a result, researches were based on powerful
systems of artificial intelligence allowing the extraction of useful information
helping us in decisions making. Responding to this need, data mining was born.
It drew its tools from the statistics and databases. The methodology of data
mining gives the possibility to build a model of prediction. This model is a phe-
nomenon starting from other phenomena more easily accessible, based on the
process of the knowledge discovery from data which is a process of intelligent
data classification. However, the built model can sometimes generate errors of
classification that even a random classification does not make. To reduce these
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errors, a great amount of research in data mining and specifically in machine
learning has been carried out on classifiers aggregation methods having as goal
to improve by voting techniques the performance of a single classifier. These
aggregation methods are good for compromised Skew-variance, thanks to the
three fundamental reasons explained in [6]. These methods of aggregation are
divided into two categories. The first category refers to those which merge preset
classifiers, such as simple voting [2], the weighted voting [2], and the weighted
majority voting [I3]. The second category consists of those which merge classi-
fiers according to data during the training, such as adaptive strategies (Boosting)
and the basic algorithm AdaBoost [22] or random strategies (Bagging) [3].

We are interested in the method of Boosting, because of the comparative
study [7] that shows, in little noise, AdaBoost is seemed to be working against
the overfitting. In fact, AdaBoost tries to optimize directly the weighted votes.
This observation has been proved not only by the fact that the empirical er-
ror on the training set decreases exponentially with iterations, but also by the
fact that the error in generalization also decreases, even when the empirical error
reached its minimum. However, this method is blamed because of overfitting, and
the speed of convergence especially with noise. In the last decade, many stud-
ies focused on the weaknesses of AdaBoost and proposed its improvement. The
important improvements were carried on the modification of the weight of exam-
ples [20], [19], [1], [21], [15], [9], the modification of the margin [10], [21], [18], the
modification of the classifiers” weight [16], the choice of weak learning [5], [25]
and the speed of convergence [23], [I4], [19]. In this paper, we propose a new
improvement to the basic Boosting algorithm AdaBoost. This approach aims
exploiting assumptions generated with the former iterations of AdaBoost to act
both on the modification of the weight of examples and the modification of the
classifiers” weight. By exploiting these former assumptions, we think that we
will avoid the re-generation of a same classifier within different iterations of Ad-
aBoost. Thus, consequently, we expect a positive effect on the improvement of
the speed of convergence. The paper is organized in three sections. In the follow-
ing section, we describe the studies whose purpose is to improve the Boosting
against its weaknesses. In the third section, we describe our improvement of
boosting by exploiting former assumptions. In the fourth section, we present an
experimental study of the proposed improvement by comparing its error in gen-
eralization, its recall and its speed of convergence with AdaBoost, on many real
databases. We study also the behavior of the proposed improvement on noisy
data. We present also comparative experiments of our proposed method with
BrownBoost (a new method known that it improves AdaBoost M1 with noisy
data). Lastly, we give our conclusions and perspectives.

2 State of Art

Due to the finding of some weaknesses, such as the overfitting and the speed
of convergence, met by the basic algorithm of boosting AdaBoost, several re-
searchers have tried to improve it. Therefore, we make a study of main methods
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having as purpose to improve boosting relatively to these weaknesses. With this
intention, the researchers try to use the strong points of Boosting such as the
update of the badly classified examples, the maximization of the margin, the
significance of the weights that AdaBoost associates the hypothesis and finally
the choice of weak learning.

2.1 Modification of the Examples’ Weight

The distributional adaptive update of the examples, aiming at increasing the
weight of those badly learned by the preceding classifier, makes it possible to
improve the performance of any training algorithm. Indeed, with each iteration,
the current distribution supports the examples having been badly classified by
the preceding hypothesis, which characterizes the adaptivity of AdaBoost. As a
result, several researchers proposed strategies related to a modification of weight
update of the examples, to avoid the overfitting.

Indeed, we can quote for example MadaBoost [9] whose aim is to limit the weight
of each example by its initial probability. It acts thus on the uncontrolled growth
of the weight of certain examples (noise) which is the problem of overfitting.

Another approach which make the algorithm of boosting resistant to the noise
is Brownboost [15], an algorithm based on Boost-by-Majority by incorporating
a time parameter. Thus for an appropriate value of this parameter, BrownBoost
is able to avoid the overfitting. Another approach, which adapts to AdaBoost a
logistic regression model, is Logitboost [19].

An approach, which produces less errors of generalization compared with the
traditional approach but with the cost of an error of training slightly more
raised, is the Modest boost [I]. In fact, its update is based on the reduction in
the contribution of classifier, if that functions “too well” on the data correctly
classified. This is why the method is called Modest AdaBoost - it forces the
classifiers to be “modest” and it works only in the field defined by a distribution.

An approach, which tries to reduce the effect of overfitting by imposing lim-
itations on the distribution produced during the process of boosting is used in
SmoothBoost [21]. In particular, a limited weight is assigned to each example
individually during each iteration. Thus, the noisy data can be excessively under-
lined during the iterations since they are assigned to the extremely large weights.

A last approach, Iadaboost [20], is based on the idea of building around each
example a local information measurement, making it possible to evaluate the
overfitting risks, by using neighboring graph to measure information around each
example. Thanks to these measurements, we have a function which translates
the need for updating the example. This function makes it possible to manage
the outliers and the centers of clusters at the same time.

2.2 Modification of the Margin

Certain studies, analyzing the behavior of Boosting, showed that the error in
generalization still decreases even when the errors in training are stable. The
explanation is that even if all the examples of training are already well classified,
Boosting tends to maximize the margins [27].
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Following this, some studies try to modify the margin either by maximizing it
or by minimizing it with the objective of improving the performance of Boosting
against overfitting.

Several approaches followed such as AdaBoostReg [I8] which tries to identify
and remove badly labeled examples, or to apply the constraint of the maximum
margin to examples supposed to be badly labeled, by using the Soft Margin.

In the algorithm, proposed by [I0], the authors use a weighting diagram which
exploits a margin function that grows less quickly than the exponential function.

2.3 DModification of the Classifiers’ Weight

During the performance evaluation of Boosting, researchers wondered about the
significance of the weights «(t) that AdaBoost associates with the produced
hypotheses.

However, they noted at the time of experiments on very simple data that the
error in generalization decreased further whereas the weak learning had already
provided all the possible hypotheses. In other words, when a hypothesis appears
several times, it votes finally with a weight, office sum of all «(t), which is
perhaps absolute. So several researchers hoped to approach these values by a
nonadaptive process, such as locboost [16] an alternative to the construction of
the whole representations of experts which allows the coefficients «(t) to depend
on the data.

2.4 Choice of Weak Learner

A question that several researchers posed against the problems of boosting is
that of weak learner and how to make a good choice of this classifier?

A lot of research moves towards the study of choosing the basic classifier
of boosting, such as GloBoost [25]. This approach use a weak learner which
produces only correct hypotheses. RankBoost [5] is also an approach which is
based on weak learner which accepts as data attributes functions of rank.

2.5 The Speed of Convergence

In addition to the problem of overfitting met by boosting in the modern
databases mentioned above, we find another problem : the speed of convergence
of Boosting especially AdaBoost.

Indeed, in the presence of noisy data, the optimal error of the training al-
gorithm used is reached after a long time. In other words, AdaBoost “loses”
iterations, and thus time, with reweighing examples which do not deserve in
theory any attention, since it is a noise.

Thus research was made to detect these examples and improve the perfor-
mance of Boosting in terms of convergence such as: iBoost [23] which aims at
specializing weak hypotheses on the examples supposed to be correctly classified.

The TAdaBoost approach also contributes to improve AdaBoost against its
speed of convergence. In fact, the basic idea of the improvement is the modifi-
cation of the theorem [I9]. This modification is carried out in order to integrate
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the risk of Bayes. The effects of this modification are a faster convergence to-
wards the optimal risk and a reduction of the number of weak hypotheses to
build. Finally, RegionBoost [14] is a new weighting strategy of each classifier.
This weighting is evaluated at the voting time by a technique based on K Nearest
Neighbors of the example to label. This approach makes it possible to specialize
each classifier on areas of the training data.

3 Boosting by Exploiting Former Assumptions

To improve the performance of AdaBoost and to avoid forcing it to learn either
from the examples that contain noise, or from the examples which would become
too difficult to learn during the process of Boosting, we propose a new approach.
This approach is based on the fact that for each iteration, Adaboost, builds
hypotheses on a defined sample, it makes its updates and it calculates the error
of training according to the results given only by these hypotheses. In addition,
it does not exploit the results provided by the hypotheses already built on other
samples to the former iterations. This approach is called AdaBoostHyb.

Program Code. Input Xy to classify, S = (z1,%1), ..., (Tn, Yn) Sample

— For i=1,n Do
— polzi) = 1/n;
— End FOR
—t<0
— While t < T Do
— Learning sample S; from S with probabilities p;.
— Build a hypotheses h; on S; with weak learning A.
— ¢, apparent error of h; on S with e, =Y weight of examples
such that argmaac(zz:l aihi(x;) #yi). ar =1/2ln((1 — €)/er).
— For i=1, m Do
— Piia(mi) — (pelxy)/Zy)e— if argmaac(zz:l a;hi(x;)) = y; (correctly
classified
Prpa(wi) — (pi(wi)/Zy)etr if argmaz( Y-, cushi(zi)) # y; (badly
classified
(Z; normalized to >, pi(x;) = 1)
— End For
t—t+1
— End While
— Final hypotheses :
H(z) =argmaxr ye€Y Zf:l oy

The modification within the algorithm is made through two ways:

The first way is during the modification of the weights of the examples: Indeed,
this strategy, with each iteration, is based on the opinion of the experts already
used (hypotheses of the former iterations) for the update of the weight of the
examples.
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In fact, we do not compare only the class predicted by the hypothesis of
the current iteration with the real class but also the sum of the hypotheses
balanced from the first iteration to the current iteration. If this sum votes for
a class different from the real class, an exponential update such as in the case
of AdaBoost is applied to the badly classified example. Thus, this modification
lets the algorithm be interested only in the examples which are either badly
classified or not classified yet. So, results related to the improvement the speed of
convergence are awaited, similarly for the reduction of the error of generalization,
because of the richness of the space of hypotheses to each iteration.

The second way is during the error analysis €(t) of the hypothesis to the
iteration T: Indeed, this other strategy is rather interested in the classifiers’
coefficient ( hypothesis) to each iteration «(t).

In fact, this coefficient depends on the apparent error analysis €(t). This
method, with each iteration, takes into account hypotheses preceding the current
iteration during the calculation of €(¢). So the apparent error with each iteration
is the weight of the examples voted badly classified by the hypotheses weighted
of the former iterations by comparison to the real class.

Results in improving the error of generalization are expected since the vote
of each hypothesis (coefficient «(t)) is calculated from the other hypotheses.

4 Experiments

The objective of this part is to compare our new approach and especially its con-
tribution with the original approach of Adaboost and to look further into this
comparison by the choice of a version improved of Adaboost (BrownBoost [15]).

Our Choice of BrownBoost was based on its robustness against the problems
of noisy data. In fact,BrownBoost is an adaptive algorithm which incorporates a
time parameter that corresponds to the proportion of noise in the training data.
So by a good estimation of this parameter BrownBoost is capable of avoiding
overfitting. The comparison criterions chosen in this article are the error rate,
the recall, the speed of convergence and the sensitivity to noise.

Table 1. Databases Description

Databases Nb. Inst Attrib Cl. Pred Miss.VaL
IRIS 150 4 numeric 3 no
NHL 137 8 numeric and symbolic 2 yes
VOTE 435 16 boolean valued 2 yes
WEATHER 14 4 numeric and symbolic 2 no
CREDIT-A 690 16numeric and symbolic 2 yes
TITANIC 750 3 symbolic 2 no
DIABETES 768 8 numeric 2 no
HYPOTHYROID 3772 30 numeric and symbolic 4 yes
HEPATITIS 155 19 numeric and symbolic 2 yes
CONTACT-LENSES 24 4 nominal 3 no
Z0OO 101 18 numeric and boolean 7 no
STRAIGHT 320 2 numeric 2 no
IDS 4950 35 numeric and symbolic 12 no
LYMPH 148 18 numeric 4 no
BREAST-CANCER 286 9 numeric and symbolic 2 yes



Improving Boosting by Exploiting Former Assumptions 137

To do this experimental comparison, we used the C4.5 algorithm as a weak
learner (according to the study of Dietterich [6]). To estimate without skew the
theoretical success rate, we used a procedure of cross-validation in 10 folds (ac-
cording to the study [I2]). In order to choose the databases for our experiments,
we considered the principle of diversity. We have considered 15 databases of the
UCT []]. Some databases are characterized by theirs missing values (NHL, Vote,
Hepatitis, Hypothyroid). Some others concern the problem of multi-class pre-
diction (Iris: 3 classes, Diabetes: 4 classes, Zoo: 7 classes, IDS: 12 classes). We
choose the IDS database [24] especially because it has 35 attributes. Table 1
describes the 15 databases used in the experimental comparison.

4.1 Comparison of Generalization Error

Table 2 indicated the error rates in 10-fold cross-validation corresponding to the
algorithm AdaBoost M1,BrownBoost and the proposed one. We used the same
samples for the tree algorithms in cross-validation for comparison purposes. The
results are obtained while having chosen for each algorithm to carry out 20
iterations. The study of the effect of the number of iterations on the error rates
of the tree algorithms will be presented in the section 4.3, where we will consider
about 100 iterations.

The results in table 2 show already that the proposed modifications improve
the error rates of AdaBoost. Indeed, for 14 databases out of 15, the proposed
algorithm shows an error rate lower or equal to AdaBoost M1. We remark, also,
a significant improvement of the error rates corresponding to the three databases
NHL, CONTACT-LENS and BREAST-CANCER. For example, the error rate
corresponding to the BREAST-CANCER database goes from 45.81% to 30.41%.

Even, if we compare the proposed algorithm with BrownBoost, we remark
that for 11 databases out of 15 the proposed algorithm shows an error rate lower
or equal to BrownBoost.

This gain shows that by exploiting hypotheses generated with the former it-
erations to correct the weights of the examples, it is possible to improve the

Table 2. Rate of error of generalization

Databases AdaBoost M1 BrownBoost AdaBoostHyb
IRIS 6.00% 3.89 3.00%
NHL 35.00% 30.01 28.00%
VOTE 4.36% 4.35 4.13%
WEATHER 21,42% 21.00 21.00%
CREDIT-A 15.79% 13.00 13.91%
TITANIC 21.00 % 24.00 21.00%
DIABETES 27.61% 25.05 25.56%
HYPOTHYROID 0.53% 0.6 0.42%
HEPATITIS 15,62% 14.10 14.00%
CONTACT-LENSES 25.21% 15.86 16.00%
ZOO 7.00% 7.23 7.00%
STRAIGHT 2,40% 2.00 2.00%
1DS 1,90% 0.67 0,37%
LYMPH 19.51% 18.54 20.97%

BREAST-CANCER 45.81% 31.06 30.41%
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performance of the Boosting. This can be explained by the calculation of the
precision of the error analysis €(¢) and consequently the calculation of the coef-
ficient of the classifier «(t) as well as the richness of the space of the hypotheses
to each iteration since it acts on the whole of the hypotheses generated by the
preceding iterations and the current iteration.

4.2 Comparison of Recall

The encouraging results, found previously, enable us to proceed further within
the study of this new approach. Indeed, in this part we try to find out the
impact of the approach on the recall, since our approach does not really improve
Boosting if it acts negatively on the recall.

Table 3 indicates the recall for the algorithms AdaBoost M1, Brownboost and
the proposed one. We remark that the proposed algorithm has the best recall
overall the 14 for 15 studied databases. This result confirms the preceding ones.
We remark also that it increases the recall of the databases having less important
error rates.

Considering Brownboost, we remark that it improves the recall of
AdaBoostM1, overall the data sets (except the TITANIC one). However, the
recall rates given by our proposed algorithm are better than those of Brown-
Boost. Except, with the zoo dataset.

It is also noted that our approach improves the recall in the case of the
Lymph base where the error was more important. It is noted though that the
new approach does not act negatively on the recall but it improves it even when
it can not improve the error rates.

Table 3. Rate of recall

Databases AdaBoost M1 BrownBoost AdaBoostHyb
IRIS 0,93 0.94 0,96
NHL 0,65 0,68 0,71
VOTE 0,94 0.94 0,95
WEATHER 0,63 0.64 0,64
CREDIT-A 0,84 0.85 0,86
TITANIC 0,68 0.54 0,68
DIABETES 0,65 0.66 0,68
HYPOTHYROID 0,72 0.73 0,74
HEPATITIS 0,69 0.70 0,73
CONTACT-LENSES 0,67 0.75 0,85
Z0OO 0,82 0.9 0,82
STRAIGHT 0,95 0.95 0,97
IDS 0,97 0.97 0,98
LYMPH 0,54 0.62 0,76
BREAST-CANCER 0,53 0.55 0,6

4.3 Comparison with Noisy Data

In this part, we are based on the study already made by Dietterich [G] by adding
random noise to the data. This addition of noise of 20% is carried out, for each
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one of these databases, by changing randomly the value of the predicted class
by another possible value of this class.

Table 3 shows us the behavior of the algorithms with noise. We notice that the
hybrid approach is also sensitive to the noise since the error rate in generalization
is increased for all the databases.

However this increase remains always inferior with that of the traditional
approach except for the databases such as Credit-A, Hepatitis and Hypotyroid.

So, we studied these databases and we observed that all these databases have
missing values. In fact, Credited, Hepatitis and Hypothyroid have respectively
5%, 6% and 5,4% of missing values. It seems that our improvement loses its
effect with accumulation of two types of noise: missing values and artificial noise,
although the algorithm AdaBoostHyb improves the performance of AdaBoost
against the noise. Considering Brownboost, we remark that it gives better error
rates that AdaboostM1 on all the noisy data sets. However, It gives better error
rates than our proposed method, only with 6 data sets. Our proposed method
gives better error rates with the other 9 data sets. This encourages us to study
in details the behavior of our proposed method on noisy data.

4.4 Comparison of Convergence Speed

In this part, we are interested in the number of iterations that allow the algo-
rithms to converge, i.e. where the error rate is stabilized. Tables 4, 5 and 6 shows
us that the hybrid approach allows AdaBoost to converge more quickly. Indeed,
the error rate of AdaBoost M1 is not stabilized even after 100 iterations, whereas
Adaboost Hyb converges after 20 iterations or even before.

For this reason we choose for the first part 20 iterations to carry out the
comparison in terms of error and recall. These results are also valid for the
database Hepatitis. In fact, This database has a lot of missing values (Rate 6%).
These missing values always present a problem of convergence. Moreover, the
same results appear on databases of various types (several attributes, the class
to be predicted with K modalities, important sizes).

Table 4. Rate of error on Noisy data

Databases AdaBoost M1 BrownBoost AdaBoostHyb
IRIS 33.00% 26.00 28.00%
NHL 45.00% 40.00 32.00%
VOTE 12.58% 7.00 7.76%
WEATHER 25.00% 22 21%
CREDIT-A 22.56% 20.99 24.00%
TITANIC 34.67% 28.08 26.98%
DIABETES 36.43% 32.12 31.20%
HYPOTHYROID 0.92% 0.86 2.12%
HEPATITIS 31.00% 27.38 41.00%
CONTACT-LENSES 33% 30.60 25%
ZOO 18.84% 14.56 11.20%
STRAIGHT 3.45% 2.79 2.81%
IDS 2.40% 1.02 0.50%
LYMPH 28.73% 24.57 24.05%

BREAST-CANCER 68.00% 50.98 48.52%
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Table 5. Comparison of speed convergence

- AdaBoost M1 BrownBoost AdaBoost hyb

Nb. iterations 10 20 100 1000 10 20 100 1000 10 20 100 1000
Iris 7,00 6,00 5,90 5,85 3.96 3.89 3,80 3,77 3,50 3,00 3,00 3,00
Nhl 37,00 35,00 34,87 34,55 30,67 30,01 29,89 29,76 31,00 28,00 28,00 28,00
Weather 21,50 21,42 21,40 14,40 21,10 21,00 20,98 21,95 21,03 21,00 21,00 21,00
Credit-A 15,85 15,79 15,75 14,71 13,06 13,00 12,99 12,97 14,00 13,91 13,91 13,91
Titanic 21,00 21,00 21,00 21,00 24,08 24,00 23,89 23,79 21,00 21,00 21,00 21,00
Diabetes 27,70 27,61 27,55 27,54 25,09 25,05 25,03 25,00 25,56 25,56 25,56 25,56
Hypothyroid 0,60 0,51 0,51 0,50 0,62 0,60 0,59 0,55 0,43 0,42 0,42 0,42
Hepatitis 16,12 15,60 14,83 14,19 14,15 14,10 14,08 14,04 14,03 14,00 14,00 14,00
Contact-Lenses 26,30 24,80 24,50 16,33 15,90 15,86 15,83 15,80 16,00 16,00 16,00 16,00
Zoo 7,06 7,00 7,00 7,00 7,25 7,23 7,19 7,15 7,00 6,98 7,00 7,00
Straight 2,50 2,46 2,45 242 2,12 2,00 1,98 1,96 0,42 0,42 0,42 0,42
1DS 2,00 1,90 1,88 1,85 0,7 0,67 0,65 0,63 0,7 0,67 0,65 0,63
Lymph 19,53 19,51 19,51 19,50 18,76 18,54 18,50 18,45 18,76 18,54 18,50 18,45

Breast-Cancer 45,89 45,81 45,81 45,79 31,10 31,06 31,04 31,00 31,10 31,06 31,04 31,00

This makes us think that due to the way of calculating the apparent error, the
algorithm reaches stability more quickly. Finally, we remark that BrownBoost
does’nt converge even after 1000 iterations. This remark prove the fact that the
BrownBoost problem is the speed of convergence.

5 Conclusion

In this paper, we proposed an improvement of AdaBoost which is based on the
exploitation of the hypotheses already built with the preceding iterations. The
experiments carried out and the results show that this approach improves the
performance of AdaBoost in error rate, in recall, in speed of convergence and
in sensibility to the noise. However, it proved that this same approach remains
sensitive to the noise.

We did an experimental comparison of the proposed method with BrownBoost
(a new method known that it improves AdaBoost M1 with noisy data). The
results show that our proposed method improves the recall rates and the speed
of convergence of BrownBoost overall the 15 data sets. The results show also
that BrownBoost gives better error rates with some datasets, and our method
gives better error rates with other data sets. The same conclusion is reached
with noisy data.

To confirm the experimental results obtained, more experimentations are
planned. We are working on further databases that were considered by other
researchers in theirs studies of the boosting algorithms. We plan to choose weak
learning methods other than C4.5, in order to see whether the obtained results
are specific to C4.5 or general. We plan to compare the proposed algorithm to
new variants of boosting, other than AdaBoost M1. We can consider especially
those that improve the speed of convergence like I[AdaBoost and RegionBoost.
In the case of encouraging comparisons, a theoretical study on convergence will
be done to confirm the results of the experiments.
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Another objective which seems important to us consists in improving this
approach against the noisy data. In fact, the emergence and the evolution of
the modern databases force the researchers to study and improve the boosting’s
capacities of tolerance to the noise. Indeed, these modern databases contain a
lot of noise, due to new technologies of data acquisition such as the Web. In
parallel, studies such as [5], [I7] and [19], show that AdaBoost tends to overfit
the data and especially the noise. So, a certain number of recent work tried to
limit these risks of overfitting. These improvements are based primarily on the
concept that AdaBoost tends to increase the weight of the noise in an exponential
way. Thus two solutions were proposed to reduce the sensibility to noise. One is
by detecting these data and removing them based on the heuristic and selection
of prototypes such as research presented in [4]and [26]. The other solution is by
detecting these data through the process of boosting, in which case we speak
about a good management of noise. According to the latest approach, we plan
to improve the proposed algorithm against the noisy data, by using neighboring
graphs or using update parameters.

Finally, a third perspective work aims at studying the Boosting with a weak
learner that generates several rules (Rule learning [I1]). Indeed, the problem of
this type of learners is the production of conflicting rules within the same itera-
tion of boosting. These conflicting rules will have the same weights (attributed
by the boosting algorithm). In the voting procedure, we are thinking about a
combination of the global weights ( those attributed by the boosting algorithm)
and the local weights (those attributed by the learning algorithm).
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Abstract. In some real world applications, the data can be represented
naturally in a special kind of graphs in which each vertex consists of a
set of (structured) data such as item sets, sequences and so on. One of
the typical examples is metabolic pathways in bioinformatics. Metabolic
pathway is represented in a graph structured data in which each vertex
corresponds to an enzyme described by a set of various kinds of properties
such as amino acid sequence, enzyme number and so on. We call this kind
of complex graphs multi-structured graphs. In this paper, we propose an
algorithm named FMG for mining frequent patterns in multi-structured
graphs. In FMG, while the external structure will be expanded by the
same mechanism of conventional graph miners, the internal structure
will be enumerated by the algorithms suitable for its structure. In ad-
dition, FMG employs novel pruning techniques to exclude uninteresting
patterns. The preliminary experimental results with real datasets show
the effectiveness of the proposed algorithm.

1 Introduction

Graphs are widely used to represent complicated structures such as proteins,
LSI circuits, hyperlinks in WWW, XML data and so on. Discovering frequent
subgraphs from a graph database is one of the most important problems of the
graph mining[4]. In recent years, several efficient algorithms of graph mining
have been developed [2I6ITOITTITEIT]. However, since the structure of data is
becoming complex more and more, these algorithms might not be sufficient in
some application domains. One typical example of such a complex database is
KEGG! , which is a database of metabolic pathways. Metabolism denotes total
chemical reactions in the body of organisms. The chemical reaction is risen up
by some enzyme and it translates a compound into another one. Pathway is a
large network of these reactions, so it can be regarded as a graph structured
data. In addition, vertices in the pathway consist of several types of data such
as compounds, enzymes, genes and so on. Therefore, a metabolic pathway can

* http://www.genome.ad.jp/kegg/
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be naturally represented in a graph in which each vertex consists of a set of
(structured) data such as item sets, sequences and so on. Since most of current
graph mining algorithms treat the element of vertices as an item, they can not
discover frequent subgraphs in which sub-patterns of vertex elements are con-
sidered. Because such kind of complex graph is expected to be going to rapidly
increase, it is important to establish a flexible technique that can inclusively
treat such kind of data.

In this paper, as one of the techniques to deal with such kind of complex
graphs, we propose a new frequent graph mining algorithm named FMG. While
we describe it in detail later, the target of FMG is a special kind of graphs, called
multi-structured graphs, that consist of vertices holding a set of (structured) data
such as item sets, sequences and so on. Given a database of multi-structured
graphs, FMG will discover frequent graph patterns that consist of vertices with
several complex structures. In order to enumerate frequent patterns completely,
on one hand, the external structures will be expanded in the manner of general
graph mining algorithms. On the other hand, the internal structures, i.e. vertices,
will be enumerated by some algorithm suitable for those structures. In addition,
FMG employs several novel optimization techniques to exclude uninteresting
patterns.

The rest of this paper is organized as follows. In section 2] we introduce some
basic notations and define our data mining problem formally. In section [3 our
frequent pattern miner FMG is proposed and explained in detail. Preliminary
experimental results with pathways in KEGG are reported in section @l After
describing related work in section [}l we conclude this paper in section

2 Preliminaries

A multi-structured graph G consists of a set of vertices V(G) and a set of edges
E(G). An edge between two vertices v and v’ is denoted as e(v,v"). Edge labels
are not considered in this paper. Each vertex v € V(G) consists of a length
n list of attributes of plural kinds of structured data. We denote the list in v
as list(v) = [elm¥,--- ,elm?] € [dom(A1),---,dom(A,)] where dom(A;) de-
notes the domain of structure of ith attribute A;. We show an example of
multi-structured graphs in Fig. [[l For example, for vi3 € V(Gy), list(vi3) is
[{a,b,c}, (AACC)] and the domain of the first and second attributes are item
sets and sequences, respectively. A spanning tree of a graph is considered with
depth first search for numbering the vertices. The first visited vertex is called
root, while the last visited vertex is called rightmost vertex. The path from the
root to the rightmost vertex in the spanning tree is called rightmost path. In
G, if we set v11 to the root, then the rightmost vertex is v14 and the rightmost
path becomes V11 0V13V14-

For example, from an attribute whose domain is graph, we can extract several
classes of pattern, such as paths, trees and graphs. So, as a bias, we have to
give the class of pattern P4, to be extracted from each attribute A;. Given
two patterns p,q € Pa,, p = g denotes that p is more general than or equals
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to ¢q. Given a vertex v with list(v) = [elmY, -+ ,elm?] and a list of patterns
Ip = [p1, - ,pn] € [Pa,, -+ ,Pa,], if all p; cover its corresponding elm?, i.e.
Vi p; < elmy, then we say that [p covers v and denote it as [p < v. Note that,
we assume that each combination of P4, and dom(A;) gives the definition of the
cover relation.

A subgraph isomorphism of two multi-structured graphs G and G’, denoted as
G C @, is an injective function f: V(G) = V(G’) such that (1)Vv € V(G) v <
f(v), and (2)Ve(u,v) € E(G) e(f(u), f(v)) € E(G"). If there exists a subgraph
isomorphism from G to G’, G is called a subgraph of G’ and G’ is called a
supergraph of G. Let D = {G1,G2,--- ,Gr} be a database of multi-structured
graphs. The support of a multi-structured subgraph pattern P, hereafter graph
pattern in short, is defined as follows.

_ ZGGD OP(G)
M

1 (PCQG)

supp(P) 0 (otherwise)

where Op(G) = {
Given a user defined threshold o, a graph pattern P is called frequent in D if
supp(P) > o holds. The problem discussed in this paper is stated formally as
follows : Given a database D of multi-structured graphs and a positive number
(0 < o < 1) called the minimum support. Then, the problem of frequent multi-
structured subgraph pattern mining is to find all frequent graph patterns P such
that supp(P) > o.

3 Mining Frequent Multi-structured Subgraph Patterns

In this section, we propose a frequent multi-structured subgraph pattern miner
named FMG. Throughout this section, we use a database shown in Fig.[I as a
running example for explaining the behavior of FMG.

Va1

T@ b, c}, &) [{b, c}, <AACC>] [{b, ¢, d}, d]) Vo
[{a, ¢, d}, <BAC>]) V4 v23 V.

26
G1 G2

Vi1

Vaz

Viz ([§, <AAA>]

Fig. 1. Target database

FMG employs a kind of the pattern-growth approach [I2II7]. Initial patterns
of FMG are multi-structured graphs with one vertex. That is to say, they are
the sets of all sub-patterns of the vertex element whose size is 1. Note that each
attribute defines the size. While the size of item sets is the number of items, the
size of sequences is the length. For example, initial patterns taken from G, are
{a}, {b}, {c}, {d}, (A), (B) and (C). FMG employs two kinds of procedures for
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expansion. The first one is for expanding internal structures, i.e. sub-patterns
in a vertex, and the second one is for overall structure or topology of graph
patterns. In this paper, the overall structure of a graph pattern is referred to
as external structure. By applying these two kinds of expansions to the initial
patterns repeatedly, all frequent multi-structured subgraph patterns are to be
enumerated.

In the following subsections, internal and external expansions are described
in detail. After that, the novel optimization techniques are introduced.

3.1 Expansion of Internal Structures

While we describe it in detail later, FMG employs general graph mining al-
gorithms for expanding external structures. This constrains the enumeration
strategy for internal structures, i.e. patterns in a vertex. The expansion of the
internal structure in FMG is limited only in the rightmost vertex of the graph
pattern. If not, many duplicated patterns will be generated.

As described before, an internal structure of a multi-structured graph con-
sists of a list of attributes of plural kinds of structured data such as item sets,
sequences and so on. In order to enumerate single sub-patterns within each at-
tribute efficiently, FMG employs several existing algorithms. For example, [14]
for item sets, and [12] for sequences. In addition to the single patterns in a vertex,
the combinations of patterns taken from different attributes have to be consid-
ered. To avoid the duplications, the enumerations have to obey the ordering in
the attribute list. Consider the case where an attribute Ag is ahead of another
attribute A;. In this case, given a single pattern p € P4,, then we avoid the
generation of patterns ¢,p € [Pa,, Pa,] because it is against the order.

3.2 Expansion of External Structures

Since the external structure of a multi-structured graph is a graph structure,
FMG employs the enumeration strategy for the external structure in the manner
of general graph mining algorithms[I[T7]. To put it concretely, the only vertices
on the rightmost path are extended by adding an edge and, if necessary, a vertex.

In order to check the isomorphism and to identify the canonical form of a
graph, the concept of code words for simple graphs is introduced [III7]. The
core idea underlying the canonical form is to construct a code word that uniquely
identifies a graph up to isomorphism and symmetry. In FMG, the similar code
words for the graph patterns are employed. The code word of a multi-structured
graph pattern P is in the form as follows.

code(P) = I(list(v)) (iq [—is] U(list(v)))™

In this code word, i, is the index of the source vertex and iy is the index of the
destination vertex, respectively. The index of the source vertex is smaller than
that of the destination vertex with respect to an edge. m is the total number of
edges. [—is] is a negative number. [(list(v)) is the string description of list(v). A
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Us1 [¢ <BAC>]

Fig. 2. Four isomorphic graph patterns

non-canonical canonical canonical
expand
internal
structure
P7
Fig. 3. The internal expansion from a non-canonical pattern to a canonical pattern

symbol ¢ is defined to be the lexicographically smallest string. The code words
of graph patterns P3—FPs in Fig. [ are shown below.

code(Ps) = [{a,c},¢] 2 -1[¢,(BAC)] 3 —1[{a,c},(4)]
code(Py) =[{a,c},(A)] 2 -1 [{a,c}, 9] 3 =2 [¢,(BAC)]
code(Ps) = [{a,c},¢] 2 =1 [{a,c},(A)] 3 —1 [¢,(BAC)]
code(Fs) = [0, (BAC)] 2 -1 [{a,c}, 0] 3 —2[{a,c}, (4)]

The canonical form of a graph pattern, or canonical pattern, is determined to
be the lexicographically smallest code word in the set of isomorphic patterns.
In Fig. 2 code(Fs) is the lexicographically smallest among the set of isomorphic
graph patterns P3—FPs. Thus, Ps can be identified as a canonical pattern.

The canonical form of the simple graph pattern satisfies the anti-monotone
property, i.€. no canonical pattern will be generated by expanding non-canonical
patterns. Thus, we need not to expand non-canonical patterns. On the other
hand, in case of mining multi-structured graphs, while no canonical pattern will
be generated by expanding external structures, some canonical patterns can be
generated from non-canonical patterns by expanding those internal structures.
For example, in Fig.[Bl P; is non-canonical pattern, while Py and Py are canonical
patterns respectively. Since the expansion of the internal structures is limited in
the rightmost vertex, Ps is not generated from Py. On the other hand, Ps will
be generated by the internal expansion of the rightmost vertex of P;.

Therefore, we cannot prune non-canonical patterns immediately. Non-
canonical patterns have to be expanded in the internal structures until they
become the canonical. However, external structures of non-canonical patterns
need not to be expanded because canonical patterns will be never obtained.
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3.3 Pruning Based on the Internal Closedness

It is easy to imagine that the number of frequent graph patterns grows expo-
nentially since all sub-patterns of a frequent graph pattern are also frequent. To
alleviate the explosion of frequent patterns, we introduce a pruning technique
based on the internal closedness.

An occurrence of a graph pattern is represented as a set of edges. The set
of all occurrences of a graph pattern P in a graph G is denoted as embg(P).
Furthermore, we define the occurrence of P in a database D as EmbP(P) =
Ugepemba(P).

Suppose that a graph pattern P’ is obtained from P by expanding the inter-
nal structure. If, for each occurrence occ, € EmbP (P), there exists at least one
corresponding occurrence occy, € EmbP (P, i.e. occy overlaps occ, completely,
then we denote it as OMp (P, P’). If OMp(P, P'), then supp(P) = supp(P’)
holds by definition. Because P is a subgraph of P’ and they have the same sup-
port value, P can be regarded as redundant. In addition, for any graph pattern
QQ obtained from P by expanding the external structure, a graph pattern @’
such that supp(Q) = supp(Q’) can be obtained from P’ by expanding external

Pattern Occurrence in G1 Occurrence in G2

@D
@D @D

P10

@)
@D CD

P11

G2

Fig. 4. Two patterns and their occurrences
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Pattern

[, <BAC> (4, <BAC>

Occurrence

Pattern

Occurrence

Fig. 5. Patterns obtained by expanding external structure of Pi¢ and their occurrences

Pattern
@ 2ec) G #c)

Occurrence v

Pattern

Occurrence

G2 Gy G2

Fig. 6. Patterns obtained by expanding external structure of P11 and their occurrences

structure. Thus, the generation of ) is redundant. Therefore, the expansion of
the external structure is not to be applied to P. In other words, P will be pruned.
We call this pruning internal closedness pruning.
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Fig. [ shows frequent patterns and their occurences when o is 2. Py is a fre-
quent pattern between G and Gi. embg, (Pio) = {{e(vi3,v14),e(v13,v11)}},
and emb(;2 (Plo) = {{6(1}21, 1}22), 8(’021, ’U24)}, {6(1}22, 1}25), 6(1}22, 1}21)}}. At the
same time, Pj; is also a frequent pattern, and it is obtained by expanding
the internal structure of Pig. embg,(P11) = {{e(vi3,v14),e(vi3,v11)}}, and
embe,(P11) = {{e(va1,v22), e(va1,v24)}, {e(va2, va5), €(vag, v21) } }. Because oc-
currences of Py; overlap those of Py completely, it is clear that OM (Pyg, P11)
holds. Showing in Fig. [l and Fig. [, since internal expansions do not influence
the external structure, the search spaces after expanding external structures of
Py and P;; are the same. So more general pattern Pjg is redundant, and this
pattern is not allowed to expand the external structure. Introducing internal
closedeness pruning, patterns shown in Fig. Bl are not enumerated actually.

3.4 Pruning Based on Monotone Constraints

The ability to handle monotone constraints will be incorporated into FMG. In
this paper, we divide the monotone constraints into two kinds. The first one
is called external monotone constraint which gives the restrictions on external
structures. The requirement of the minimum number of vertices is an example of
this kind of constraint. The second kind of constraint is called internal monotone
constraint. It constrains patterns in a vertex, €.g. the minimum length of a
sequence in a vertex.

As similar to the traditional top-down graph mining algorithms, it does not
influence the generation of candidate patterns whether a certain pattern satisfies
the given external monotone constraints in FMG. On the other hand, internal
monotone constraints can be utilized for the effective pruning. In FMG, the

violate
minimum

length
P12 constraint : %
expand
internal violate

structure minimum

length
constraint
[b, <AB>] % [b, <ABS] %
expand
internal
structure i
satisfy
minimum
P length

[$, <ABC>] ) constraint
\3‘23

Fig. 7. Expanding with internal monotone constraint

Q@poeD ==
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Fig. 8. A part of search space of FMG

expansion of the external structure does not be applied until the internal struc-
ture in the rightmost vertex satisfies the internal monotone constraints. In other
words, the external structure will be expanded only after the internal structure
in the rightmost vertex satisfies the internal monotone constraints. By employing
the above enumeration strategy, we can avoid the generation of graph patterns
which have non-rightmost vertices that do not satisfy the internal monotone
constraints. Note that, no graph pattern satisfying the constraints can be enu-
merated by expanding graph patterns having non-rightmost vertices that do not
satisfy the internal monotone constraints.

We will explain the pruning based on an internal monotone constraint with an
example shown in Fig.[l We assume that the given internal monotone constraint
is that the length of a sequential pattern is more than 2. No pattern will be
enumerated by expanding the external structure of Pjo because the sequential
pattern (A) violates the constraint. Thus, the only internal expansion will be
applied to P2 and as a result, P;3 will be obtained. Again, because P53 does not
satisfy the internal monotone constraint, external expansion will not be applied.
For Pp4 and its successors, both of internal and external expansions are allowed.
As explained, introducing internal monotone constraints enable to reduce the
number of patterns to be generated by expanding the external structure of the
pattern.

On the other hand, suppose that we enumerate a pattern by expanding ex-
ternal structure of Pys. Then the pattern has a vertex that does not satisfy the
internal monotone constraint. In FMG, internal expansion will be applied to the
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Algorithm 1. FMG(o, D, Ciy,, Cez)
1: Input: a multi-structured graph database D, minimum support o, internal mono-
tone constraint Cm, external monotone constraint Ce,.

2: Output: a set of frequent subgraphs FG that satisfies constraints.
3: FG = 0;

4: 8D := a set of initial patterns of D;

5: for all g € SD do

6:  call expand(g, o, D, FG, Cin, Cex);

7: end for

8: return FG;

rightmost vertex only. Therefore, no pattern satisfying the constraints can be
obtained from such patterns. This shows that the pruning based on the internal
monotone constraint does not affect on the completeness.

3.5 FMG: A Frequent Multi-structured Subgraph Pattern Miner

We show the pseudo code of FMG in Algorithms [Il and Bl In these algorithms,
line 3-8 in expand/6 corresponds to the pruning based on the internal mono-
tone constraint. If a frequent graph pattern g violates the internal monotone
constraint, the external expansion will not be applied to g. On the other hand,
regardless of the external monotone constraint, the external expansion will be
applied only to the canonical patterns which satisfy the internal monotone con-
straint. The applicability of the internal closedness pruning is examined for the
graph patterns which satisfy both of internal and external monotone constraints
in line 10-21 in expand/6.

In Fig. Bl we show a part of search space of FMG for a database in Fig. [l
under the conditions that the minimum support ¢ is 2, minimum number of
items in each vertex is 2, and minimum number of vertices is 2. The last two
conditions are internal and external monotone constraints, respectively. In this
figure, dashed lines denote the internal expansions, and solid lines indicate the
external expansions. ()1 is one of the initial patterns. ()2 and @3 are not to be
enumerated because of the pruning based on the internal monotone constraint.
While @11 can be obtained by applying external expansion of @19, FMG does
not generate Q11 because the condition for the internal closedness pruning holds
between Q19 and Q12.

4 Experimental Results

In order to assess the effectiveness of the proposed algorithm, we implement the
prototype of FMG in Java and conduct some preliminary experiments with real
world datasets obtained from KEGG database. We use the pathway database of
RIBOFLAVIN METABOLISM. This database includes pathways for different
organisms. Three datasets of different size are prepared. The average number
of vertices and edges of each dataset are shown in Table [[l The vertex of the
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Algorithm 2. Expand(g, o, D, FG, Ciy, Ces)

1: Input: a multi-structured graph pattern g, minimum support o, a multi-structured
graph database D, internal monotone constraint Cj,,, external monotone constraint
Ces.

2: if supp(g) > o then

3: if g violates C;,, then

4: Pin := a set of patterns obtained by expanding the internal structure of g;
5: for all p € P;, do

6: call expand(p, o, D, FG, Cin, Cez);

7 end for

8  else

9: Pin := a set of patterns obtained by expanding the internal structure of g;
10: bool := false;

11: if g satisfies Ce; then

12: bool := true;

13: for all p;, € Pin, do

14: if OMp(g, pin) then

15: bool := false;

16: end if

17: end for

18: if bool A g is canonical then

19: FG:=FGU{g};

20: end if

21: end if

22: Pew = 0;

23: if bool A g is canonical then

24: Pee := a set of patterns obtained by expanding the external structure of g;
25: end if

26: P :=Pin U Pex;

27: for all p € P do

28: call expand(p, o, D, FG, Cin, Cez);

29: end for

30:  end if

31: end if

pathway consists of enzymes, links to other pathway and compounds. Enzymes
consist of an amino acid sequence and the enzyme number. Links are treated
as an item. Compounds consist of a set of links to other pathway and its label.
Those are treated as an item sets. As a result, we define the vertex element list
as [item, number, item set, sequence].

The external and internal constraints used in the experiments are that the
minimum number of vertices in the pattern is 5 and the minimum length of the
sequence in a vertex is 7. All experiments were done on a PC(Intel Pentium
IV, 2GHz) with 2GB of main memory running Windows XP. The experimental
results are shown in Table

While changing the minimum support value o, we measured the number of
patterns discovered (patterns), execution time (time), number of patterns pruned
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Table 1. Three datasets

size average vertices average edges

50 20.24 18.78
100 21.03 19.51
150 20.29 18.67

Table 2. Experimental results with three datasets

size o [%] patterns time[sec] closed monotone
100 60 35 2885 5839 31110
50 116 7256 15301 115646
45 918 16789 41692 347786
40 66762 49320 146993 1404278

50 50 8 4394 42140 144854
40 26308 52610 470893 1925831

150 50 110 5106 6147 43714
40 1077 23431 31180 296794

2.5.1.9, <M-x(0,1)-F-x(0,1)-G-x-(0,1)-I-x(0,1)-EE>

<G-x(0,1)-T-x(0,1)-H-x(0,1)-DYV>

C04732

<D-x(0,1)-E-x(0,1)-R-x(0,1)-NEGD> €00199 path:00030

Fig. 9. An example of extracted patterns

by internal closedness pruning (closed) and number of patterns pruned by inter-
nal monotone constraints (monotone). Both the number of patterns discovered
and execution time increase exponentially as the minimum support decreases.
On the other hand, the number of patterns pruned by the internal closedness
and the internal monotone constraint pruning are greater than the the number
of patterns discovered. Not introducing the pruning techniques, patterns pruned
are expanded to more specific patterns. We can easily imagine that it takes too
long time to finish experiments.
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We conducted another experiments by using FMG without internal mono-
tone constraint. However, the result was not able to be obtained within 24
hours. These results indicate the effectiveness of two pruning techniques. We
show an example of extracted patterns in Fig. In this pattern, the vertex
denoted as C00255 is riboflavin, the most important chemical compound in the
riboflavin metabolism. At the same time, the sequential patterns of the enzyme
are extracted. As shown, we succeeded in discovering a special kind of patterns
with FMG.

5 Related Work

Recently, many graph mining algorithms have been developed and applied to
several real world problems[II2IBI6I7OTOITTITETONTT]. However, since most of
these algorithms do not take the internal structure into account, they might fail
to discover some meaningful patterns which will be found by FMG.

DAG Miner[3] differs from these traditional graph miners and it is one of
the most related studies to FMG. DAG Miner extracts frequent patterns from
directed acyclic graphs in which each vertex has an item sets. In DAG Miner,
all of frequent item sets will be found in advance, and then, by using these item
sets, a restricted form of frequent DAG patterns called pyramid patterns will
be mined. In contrast to DAG miner, FMG enumerates internal and external
structures simultaneously.

On the other hand, mining algorithms for complex tree-structured patterns
have been proposed. FAT-miner[§] is an algorithm for discovering frequent tree
patterns that consists of vertices holding a set of attributes. pFreqT[I3] mines
frequent subtrees in which each vertex forms a sequence. While these two miners
handle the tree-structured data, the target of FMG is complex graphs. In addi-
tion, FMG permits the combination of various structured patterns in the vertex.

6 Conclusion

In this paper, we focus on the problem of frequent pattern discovery in complex
graph structured databases. By combining several algorithms for mining (struc-
tured) data such as item sets, sequences and graphs, we propose an algorithm
FMG for mining frequent patterns in multi-structured graphs. Through the pre-
liminary experiments, we show the effectiveness of the proposed algorithm.

As one of the future works, we plan to exploit FMG in order to extract more
meaningful patterns.
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Abstract. Mining frequent patterns is a major topic in data mining research,
resulting in many seminal papers and algorithms on item set and episode dis-
covery. The combination of these, called composite episodes, has attracted far
less attention in literature, however. The main reason is that the well-known fre-
quent pattern explosion is far worse for composite episodes than it is for item
sets or episodes. Yet, there are many applications where composite episodes are
required, e.g., in developmental biology were sequences containing gene activity
sets over time are analyzed.

This paper introduces an effective algorithm for the discovery of a small, de-
scriptive set of composite episodes. It builds on our earlier work employing MDL
for finding such sets for item sets and episodes. This combination yields an op-
timization problem. For the best results the components descriptive power has to
be balanced. Again, this problem is solved using MDL.

Keywords: Composite episodes, MDL.

1 Introduction

Frequent pattern mining is a major area in data mining research. Many seminal papers
and algorithms have been written on the discovery of patterns such as item sets and
episodes. However the combination of these two, called composite episodes, has at-
tracted far less attention in the literature. Such composite episodes [1]] are episodes of
the form

{A,B} — {C,D} — {E}.

There are applications were one would like to discover frequent composite episodes.
In developmental biology one has data sets that consist of time series were at each
time point sets of events are registered. In one type of data, these events are the active
genes at that moment in the development. In another type of data, the events are the
morphological characters that occur for the first time at that moment in the development.
For both types of data, frequent composite episodes would yield important insight in the
development of species.

The main reason why there has been little attention to the discovery of composite
episodes in the literature is that the frequent pattern explosion is worse for composite
episodes than it is for both frequent item sets and for frequent episodes. In other words,
the number of frequent patterns quickly explodes. For example, if { A, B} — {C, D} is
frequent, then so are {A}, {A} — {C}, {A} — {D}, {A} — {C, D}, {B}, {B} —

Z.W. Ras, S. Tsumoto, and D. Zighed (Eds.): MCD 2007, LNAI 4944, pp. 157 2008.
(© Springer-Verlag Berlin Heidelberg 2008
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{C},{B} = {D},{B} — {C,D},{A,B} — {C},and {A, B} — {D}. So, clearly
an A Priori like property holds, but the number of results will simply swamp the user.

In related work so called Follow-Correlation Item set-Pairs are extracted. These
are patterns of the form < A™, B" > meaning: B likely occurs n times after A oc-
curs m times. Patterns of this form only describe the interaction between two subse-
quent item sets and their complexity lies somewhere between item sets and composite
episodes. And unlike our method this method does not offer a solution to restrict the
number of patterns generated for low minimal support values. Other related work, item
set summarization [3]], does offer a method to restrict the number of item sets. However,
there is no straightforward generalization to composite episodes.

In earlier work [4] we showed that MDL can be used to select interesting patterns
that give a good description of the database. This paper extends on our earlier work
on the use of MDL to select interesting item sets and episodes, we propose a method
that reduces the number of generated patterns before it starts combining item sets into
composite episodes. This reduces the number of generated patterns dramatically, while
still discovering the important patterns.

Briefly the method works as follows: using a reduced set of item sets as building
blocks for the patterns in the time sequences, we limit the number of possible patterns
for a given dataset. MDL is used to select the item sets extracted from the data that
contribute the most to the compression of that data as shown in [3]. Then the reduced
set of patterns is used to encode the database after which episodes are extracted from
this encoded database. Finally MDL is used again to reduce this set of episodes [6]].

Simply running these two stages independently after each other, however, doesn’t
necessarily produce the best results. A too selective first stage will limit our abilities to
select good composite sequences in the second stage. The selectivity of both stages has
to be balanced for optimal results. We again use MDL to achieve this balance.

The rest of this papers is structured as follows. In Section 2 we will give some def-
initions of the concepts used in the rest of this paper. Section 3 introduces our 2-Fold
MDL compression method used to extract composite episodes. Section 4 introduces the
dataset we used in the experiments. The experiments and their results are discussed in
Section 5. Section 6 contains our conclusions.

2 Composite Episode Patterns

Episodes are partially ordered sets of events that occur frequently in a time sequence.
Mannila described 3 kind of episodes in [[1]], parallel episodes which can be seen as item
sets, serial episodes and composite episodes as shown in figure[Il

The data and the composite episodes can be formalized as follows: For item sets x;
and x; in a sequence x, we will use the notation z; < x; to denote that x; occurs before
T; 1IN T.

Definition 1. Given a finite set of events Z,
1. A sequence s over I is an ordered set of item sets
s = {(isi,1) }ieq1,..,n}s
inwhich the is; C . If 1 < i < j < n, then (is;,1) = (is;,7).
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O—0

Fig. 1. (a) Item set, (b) episode, (c) composite episode

2. Anitem set is is a set of events that happen together.
is=(e1,...,€;)

where j is the size of the item set.
3. A composite episode ep is a sequence of item sets.

ep = (is1,...,i8k)
is; = (e1,...,€q)

where iy is the size of the i'h item set.
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The database db consists of a set of sequences of item sets, i.e., it consists of composite
episodes. In this database, we want to find the frequent composite episodes. To define
these, we need the notion of an occurrence of a composite episode. Note that, because

of our application, we do not allow gaps in occurrences.

Definition 2

1. Let x be composite episodes and 1y be a sequence. Let I be the set of composite
episodes and @ : I — I an injective mapping. x occurs in y, denoted by x C y, iff

(a) Vz; € x : z; C ()
(b) Vx;,2; € x:
ii. Jyr €y D(x;) 2yp 2 P(z)) &
Jap € Pag) =yp Ny 2 ap 2 oy
The mapping @ is called the occurrence.

2. Length of an occurrence o is time interval between the first (ts) and the last (t.)

event in the occurrence

length(o) = t.(0) — ts(0)

3. Support of an episode is the number of occurrences of the episode in the database.

So, ({A, B},{C?}) occursonce in {A, B,C},{C, D}, while ({A}, {B}) doesn’t.



160 R. Bathoorn and A. Siebes

v

1= 7 r-
A B! E 'FI IF A B G F
C D - G C A
F g A D

~= composite episode

|
""" > ijtemset

Fig. 2. Example sequence with a composite episode occurrence highlighted

2.1 Pattern Explosion

As noted before, the number of composite episodes quickly explodes. In a composite
episode of length 10 containing 3 possible events we have 7 possible item sets. This
leads to X0, 7" = 329554456 possible composite episodes. More in general, with n
events and a sequence of length k£ we have as number of possible composite episodes:

k

2(271 _ l)i

i=1

Clearly, if the number of frequent item sets is not the maximum, then the number of
possibly frequent composite episodes also goes down.

While the growth remains exponential, the fewer (frequent) item sets we consider,
the fewer composite episodes we have to consider. This is exactly the power of our
approach: by dramatically reducing the number of item sets to consider, the number of
of composite episodes to consider becomes manageable.

2.2 Item Set MDL

The basic building blocks of our database are the items Z, e.g., the items for sale in
a shop. A transaction ¢ € P(Z) is a set of items, e.g. representing the items a client
bought at that store. A database db over Z is a bag of transactions, e.g., the different
sale transactions on a given day. An item set / € Z occurs in a transaction ¢ € db iff
I C t. The support of I in db is the number of transactions in the database in which I
occurs.

We will now give a quick summary on how MDL can be used to select a small and
descriptive set of item sets, using the Krimp algorithm which was introduced in [3]].
This is a shortened version of the description given in [4]].

The key idea of our compression based approach is the code table, a code table
has item sets on the left-hand side and a code for each item set on its right-hand side.
The item sets in the code table are ordered descending on 1) item set length and 2)
support. The actual codes on the right-hand side are of no importance: their lengths
are. To explain how these lengths are computed we first have to introduce the coding
algorithm. A transaction ¢ is encoded by Krimp by searching for the first item set ¢ in
the code table for which ¢ C t. The code for ¢ becomes part of the encoding of ¢. If
t \ ¢ # (), the algorithm continues to encode ¢ ¢. Since we insist that each code table
contains at least all singleton item sets, this algorithm gives a unique encoding to each
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(possible) transaction. The set of item sets used to encode a transaction is called its
cover. Note that the coding algorithm implies that a cover consists of non-overlapping
item sets. The length of the code of an item in a code table C'T; depends on the database
we want to compress; the more often a code is used, the shorter it should be. To compute
this code length, we encode each transaction in the database db. The frequency of an
item set ¢ € C'T' is the number of transactions ¢ € db which have c in their cover. The
relative frequency of ¢ € C'T; is the probability that ¢ is used to encode an arbitrary
t € db. For optimal compression of db, the higher P(c), the shorter its code should be.
In fact, from information theory [7]] we have the optimal code length for ¢ as:

freq(c)
ZdeCTl freq(d)
The length of the encoding of a transaction is now simply the sum of the code lengths

of the item sets in its cover. Therefore the encoded size of a transaction ¢t € db com-
pressed using a specified code table C'T; is calculated as follows:

Ler()= >, len(o) )

cecover(t,CTy)

ler,(¢) = — log(P(cldb)) = — log ( (1)

The size of the encoded database is the sum of the sizes of the encoded transactions,
but can also be computed from the frequencies of each of the elements in the code table:

Lor(dh) = 3 Lon(t) = = 3 freq(c) -10g< s ) 3

tedb ceCT) > acer, freq(d)

Finding the Right Code Table. To find the optimal code table using MDL, we need to
take into account both the compressed database size as described above as well as the
size of the code table. (Otherwise, the code table could grow without limits and become
even larger than the original database!) For the size of the code table, we only count
those item sets that have a non-zero frequency. The size of the right-hand side column
is obvious; it is simply the sum of all the different code lengths. For the size of the left-
hand side column, note that the simplest valid code table consists only of the singleton
item sets. This is the standard encoding (st) which we use to compute the size of the
item sets in the left-hand side column. Hence, the size of the code table is given by:

L(CT) = > Lst(c) + ler(c) (4)

ceCT:freq(c)#0

In [5]] we defined the optimal set of (frequent) item sets as that one whose associated
code table minimizes the total compressed size:

L(CT) + LCT(db) (5

The algorithm starts with a valid code table (generally only the collection of sin-
gletons) and a sorted list of candidates. These candidates are assumed to be sorted
descending on 1) support and 2) item set length. Each candidate item set is considered
by inserting it at the right position in C'I" and calculating the new total compressed size.
A candidate is only kept in the code table iff the resulting total size is smaller than it
was before adding the candidate. For more details, please see [3]].
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Fig. 3. Example of a sequence cover

2.3 Episode MDL

For episode mining the basic building blocks of our database db are item sets I, e.g. all
the genes active at one point in time. Each transaction ¢ € db is a sequence of item sets,
e.g. a time sequence recording the activity of genes over time. An episode e occurs in a
transaction ¢ if all the item sets in e occur in ¢ without gaps between them as described
in Definition 21 Reducing a set of episodes using MDL follows the same steps as used
in item set MDL. Thus we start with a codetable with two columns, it has an episode
on it’s left-hand side and a code for each episode on the right-hand side. The code table
is used to cover all sequences in the database, an example of such a cover can be seen
in Figure 3] The frequency with which the codes in the code table are used to cover all
the sequences in the database determines their code size, the more a code is used the
shorter its code. It is important to note that because of our application in developmental
biology we do not allow overlap between the episodes in a cover, or gaps within the
episodes. To determine the size of our episode code table we need to define a standard
encoding for episodes [, as well. As the length of an episode in the codetable we use
the length of that episode as it would be when we encoded it using only episodes of
length 1, this is called this episodes standard encoding. With this standard encoding the
size of our episode code table C'I. becomes:

L(CT,) = > lst. (¢) +lor. () (6)
ce€CTe:freq(c)#0

Using the episodes in our code table to encode our database leads to the following
database size:

Lot (db) = Y Ler,(t) == ) freq<c>~1og< iy ) (7)

tedb ceCT. > aecr, freq(d)

More details on reducing frequent episode sets using MDL can be found in [6]).

2.4 Combining Item Set and Episode MDL

In our method for finding composite episodes we are combing item set an episode MDL.
First we use a set of item sets to compress our database. Then we extract episodes
from the encoded database that results from the item set compression. Using MDL we
select the episodes that give a good compression of our item set encoded database.
To determine which item sets and episodes are used in the compression we have to
optimize Liotq-

Liotas = L(CT;) + L(CT.) + Lo, (enc(CT;, db)) ®)
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where enc(CT;, db) is the database as encoded by item set code table C'T;. This last
equation shows that to compute the total size we now need the item set code table CT;
as well as the episode code table C'T, plus the double encoded database.

3 2-Fold MDL Compression

The basis of the algorithm used to find the composite episode patterns consists of 4
steps.

BASE(data, min sup, max length)

Find item sets for given min sup

Compress the database using item set MDL

Find episodes in the encoded database with given max;ength
Compress the database using episode MDL

[ N S

return composite episodes

Fig. 4. Base algorithm

In the first step we use a standard FP-growth algorithm [8] to find all the item sets
for a given minimal support. Which minimal support to use is the subject of the next
subsection.

The set of item sets is used in the second step where MDL is used to heuristically
select those item sets that give the shortest description of the database. This results
in a compressed database together with a code table used to obtain the compressed
database as described in Section 2.2 This code table is a set of item sets selected from
all frequent item sets and the encoded database is a copy of the original database in
which all occurrences of codetable elements are replaced by a code that represents this
item set.

In the third step we get all frequent episodes from the encoded database that was
generated in the previous step. The frequent episodes are extracted using a minimal
occurrence episode discovery algorithm from [[I]]. Note that because we extract our
episodes from the encoded database each event in the discovered episodes could now
also be an item set, thus the episodes extracted are composite episodes.

And finally we use our method from Section 23] to get a set of episodes that give a
good description of the database.

The output of our method consists of 2 codetables one from step 2 and one from
step 4 together with the compressed database from step 4. Our MDL method enforces a
loss-less compression of the database thus the 2 code tables can be used to decompress
the database and generate the original dataset.

3.1 Compression Optimization

What is the right minimal support to use for extracting the item sets from the data? The
minimal support limits the amount of episodes that could possibly be found. This can
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L_total
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Minimal Support

Fig. 5. Compressed Database size against minimal support values

2-FoLD(data, max length, start, end)

—_

best result = BASE(data, start,max length)

foreach minsup in [start + 1..end)

cur result = BASE(data, minsup, mazx length)

2
3
4 if (cur result.mld size < best result.mdl size) then
5 best result = cur result

6

return best result

Fig. 6. Complete algorithm

be seen as an optimization problem where we take Ly (equation[8) as the value to
be optimized. We are interested in finding the minimal support that results in the lowest
possible value of Liotq-

Figure[3lshows the overall compression of the database for different minimal support
levels. On the x-axis we have the minimal support used in the extraction of the item sets.
Changes in the compression are caused by the interaction of item sets and episodes used
in the compression.

At point ‘A’ in the graph the minimal support is set to 1, which means that all possible
item sets will be extracted from the database. As the item sets are extracted before the
episodes this means there is a strong bias towards the use of large item sets. Additionally
the reduced set of item sets generated with the use of MDL is used in the encoding of
our database before we proceed with the extraction of episodes. This will lower the
probability of finding long episodes as they have to be build up of large item sets. As
all item sets used in the encoding of our database are substituted by a single code this
makes it impossible to use subsets of these item sets.

Increasing the minimal support will lower the number and size of the found item sets
and will increase the possibility of longer episodes being used in the compression. After
reaching a certain threshold no item sets are used anymore and the compression will be
based solely on episodes. This point is reached at ‘C’.
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Because of this interaction between item sets and episodes, we expect the best com-
pression of our database somewhere near point ‘B’ in the graph. This changes our prob-
lem of finding the best minimal support for our algorithm to an optimization problem
where we optimize the compression of the database by varying the minimal support.
Our base algorithm can be extended by putting it inside a loop that runs the method
for all the minimal support values we are interested in. So now the entire algorithm
becomes as can be seen in Figure[6]

Computing this optimal solution comes at the prize of having to do one run of the
composite episode extraction for each minimal support value. But as these runs do not
depend on each other they can be run on different processors or different computers
all together. Making this algorithm well suited for parallel computation and cutting the
runtime down to the runtime of one run of the composite episode extraction algorithm.

4 The Data

For our experiments we use two datasets from the biological domain. The first dataset
contains time sequences containing developmental information of 5 different species.
In these time sequences the timing of the activity of 28 different genes are recorded.
There are large differences in the time sequences in length as well as in the number
of times the events are present in each. More background information on the biology
involved in the analysis of developmental sequences can be found in [9]. The second
dataset contains time sequences of 24 mammals. It records the start of 116 different
morphological characters such as the forming of the optic lens.

Table 1. Dataset description

dataset #sequences #events
gene activity 5 species 28 genes
morphological characters 24 species 116 characters

The datasets currently produced by the biologists are so small that the codetable is
very large in relation to the database hampering the compression. As the biologists are
working on producing bigger datasets in the future, we used the following method to test
our method on a bigger datasets. The gene activity dataset was enlarged by combining
time sequences of two randomly chosen species in a new time sequence by adding a
reversed copy of the second time sequence to the back of the first. This recombination
is used to preserve the types of patterns that can be found in the data but increases the
number of patterns found as well as their frequency. The artificial dataset contains 10
of these combined time sequences, doubling the number of time sequences as well as
the average length of these sequences.

5 Experimental Results

The first experiment was done on the original gene activity dataset and composite
episodes were extracted for minimal support values ranging from 3 to 21. Figure[Zlshows
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Fig. 7. Item set code table (ct;) and episode code table (ct.) sizes for the original (left) and the
artificial (right) dataset

the size of the code tables for the different minimal support values. Here we can see that
for lower minimal support levels the item set codetable is bigger than the episode code
table and this is the other way around when the minimal support is increased.

In our experiments on the morphological characters dataset the algorithm was run
multiple times for 7 different minimal support values ranging from 2 to 8. Where the
minimal support is the minimal support for the item set extraction. The item sets are
extracted using the implementation of fp-growth taken from [[I0]. The episodes were
extracted using 3 different maximal episode lengths, 25, 35 and 45. It is important to
note that the end result of our method is a set of composite episodes, the compression
values in this experiment are only used to select the best minimal support for the item
set discovery.

Figure [§] (left) shows the compressed database size as a function of the minimal
support of the item set extraction for two maximal episode lengths. The compressed
database size shown in the figure is the sum of the item set codetable, the episode
codetable and the size of the encoded database. The figure looks very similar to figure[3]
which was what we predicted based on the interaction of the item sets and the episodes.
In figure [§] we can see that we reach the best compression for a minimal support of 4.
The same experiment was done on the artificially enlarged dataset. With item sets being
extracted for 20 different minimal support values ranging from 5 to 100. The episodes
are extracted using 2 different maximal episode lengths, 250 and 350. The results are
also shown in Figure [§] (right) we can see that we reach the best compression for a
minimal support of 40.

To give an indication of the amount of reduction reached in the total number of
patterns generated, only between 0.002% and 6.667% of the frequent item sets were
selected by MDL. The reduction decreased for higher minimal support. As we showed
in Section[Z.1] this gives a tremendous reduction in the possible composite episodes. For
the frequent episodes only between 0.33% and 1,7% of the episodes were selected by
MDL as being interesting. Here the reduction was better for higher minimal support,
due to the interaction between the item sets and the episodes in the total compression.

For the original dataset 2-Fold started with a set of 58 item sets from which it con-
structed 18 composite episodes. An example of such a composite episode: {hoxcl0} —
{hoxd11, hoxd12} which describes the temporal collinearity of hox genes that Biolo-
gists already know from their experiments.
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Fig. 8. Compressed Database size against minimal support values for the gene activity dataset
(left) and the morphological dataset (right)

6 Conclusions and Future Work

In this paper we show that it is possible to mine for the descriptive composite episodes
from data. The 2-Fold algorithm uses MDL to keep the combinatorial explosion of
potential patterns under control. 2-Fold uses MDL in three different ways. Firstly to
mine for descriptive item sets. Secondly to mine for descriptive episodes. Thirdly to
balance the first two, to ensure the discovery of descriptive composite episodes. The
experiments show first of all that MDL performs well in all three of its tasks. The
number of composite episodes discovered is small enough that experts can still verify
them. Moreover, the validity of the results we discovered has been verified by domain
experts.
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Abstract. We consider the problem of ordinal classification, in which
a value set of the decision attribute (output, dependent variable) is fi-
nite and ordered. This problem shares some characteristics of multi-class
classification and regression, however, in contrast to the former, the or-
der between class labels cannot be neglected, and, in the contrast to the
latter, the scale of the decision attribute is not cardinal. In the paper, fol-
lowing the theoretical framework for ordinal classification, we introduce
two algorithms based on gradient descent approach for learning ensem-
ble of base classifiers being decision rules. The learning is performed by
greedy minimization of so-called threshold loss, using a forward stage-
wise additive modeling. Experimental results are given that demonstrate
the usefulness of the approach.

1 Introduction

In the prediction problem, the aim is to predict the unknown value of an at-
tribute y (called decision attribute, output or dependent variable) of an object
using known joint values of other attributes (called condition attributes, predic-

tors, or independent variables) x = (x1, 2, ..., xy). In the ordinal classification,
it is assumed that y = {ry,...,rx}, with r, &k € K = {1,..., K}, being K
distinct and ordered class labels rx = rx_1 > ... = r1, where > denotes the

ordering relation between labels. Let us assume in the following, without loss
of generality, that r; = k. This problem shares some characteristics of multi-
class classification and regression. A value set of y is finite, but in contrast to
the multi-class classification, the order between class labels cannot be neglected.
The values of y are ordered, but in contrast to regression, the scale of y is not
cardinal. Such a setting of the prediction problem is very common in real appli-
cations. For example, in recommender systems, users are often asked to evaluate
items on five value scale (see Netflix Prize problem [16]). Another example is
the problem of email classification to ordered groups, like: “very important”,
“important”, “normal”, and “later”.

The problem of ordinal classification is often solved by multi-class classifi-
cation or regression methods. In recent years, however, some new approaches
tailored for ordinal classification were introduced [T3IG/T8T7BITAITH]. In this
paper, we take first a closer look at the nature of ordinal classification. Later
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© Springer-Verlag Berlin Heidelberg 2008
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on, we introduce two novel algorithms based on gradient descent approach for
learning ensemble of base classifiers. The learning is performed by greedy mini-
mization of so-called threshold loss [I7] using a forward stagewise additive mod-
eling [12]. As a base classifier, we have chosen single decision rule which is a
logical expression having the form: if [conditions], then [decision]. This choice
is motivated by simplicity and ease in interpretation of decision rule models.
Recently, one can observe a growing interest in decision rule models for classifi-
cation purposes (e.g. such algorithms like SLIPPER [5], LRI [19], RuleFit [I1],
ensemble of decision rules [TI2]).

Finally, we report experimental results that demonstrate the usefulness of
the proposed approach for ordinal classification. In particular our approach is
competitive to traditional regression and multi-class classification methods, and
also to existing ordinal classification methods.

2 Statistical Framework for Ordinal Classification

Similarly to classification and regression, the task is to find a function F'(x) that
predicts accurately an ordered label of y. The optimal prediction function (or
Bayes optimal decision) is given by:

F*(x) = arg ?(1,3 EyxL(y, F(x)) (1)

where the expected value E,x is over joint distribution of all variables P(y, x) for
the data to be predicted. L(y, F'(x)) is a loss or cost for predicting F'(x) when the
actual value is y. EyxL(y, F/(x)) is called prediction risk or expected loss. Since
P(y,x) is generally unknown, the learning procedure uses only a set of training
examples {y;,x;}V to construct F(x) to be the best possible approximation of
F*(x). Usually, it is performed by minimization of empirical risk:

1 N
R. = N ;L(yﬂF(XZ))

Let us remind that the typical loss function in binary classification (for which
y € {-1,1}) is 0-1 loss:

_JOo  ify=F(x),
Lot Fo) = {§ R0 @)
and in regression (for which y € R), it is squared-error loss:
Lee(y, F(x)) = (y — F(x))*. 3)

One of the important properties of the loss function is a form of prediction
function minimizing the expected risk F*(x), sometimes called population min-
imizer [12]. In other words, it is an answer to a question: what does a mini-
mization of expected loss estimate on a population level? Let us remind that the
population minimizers for 0-1 loss and squared-error loss are, respectively:

F(x) =sgn(Pr(y = 1|x) = 0.5),  F'(x) = Eyx(y)-
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Table 1. Commonly used loss functions and their population minimizers

Loss function Notation L(y, F(x)) F*(x)
Binary classification, y € {—1,1}:

Exponential loss Leyp exp(—y - F(x)) 5 log P??(!y:ﬂ’li)
Deviance Liev log(l+exp(—2-y- F(x))) ) log P??(!y:ﬂ’li)
Regression, y € R:

Least absolute de-  Lijuq ly — F(x)] median,« (y)

viance

Apart from 0-1 and squared error loss, some other important loss functions are
considered. Their definitions and population minimizers are given in Table [Tl

In ordinal classification, one minimizes prediction risk based on the K x K
loss matrix:

Lixk(y, F(x)) = [lijlgkxx (4)
where y, F((x) € K, and i = y,j = F(x). The only constraints that ) must
satisfy in ordinal classification problem are the following, l;; = 0,Vi, l;x >
lij;;V k>3 >1, and l; > 1;;,V E < j <1i. Observe that for

lij =1, ifi#j, (5)

loss matrix (@) boils down to the 0-1 loss for ordinary multi-class classification
problem. One can also simulate typical regression loss functions, such as least
absolute deviance and squared-error, by taking:

Lij =i —jl, (6)
lij = (i — j)*, (7)

respectively. It is interesting to see, what are the population minimizers of the
loss matrices (B))-(7). Let us observe that we deal here with the multinomial dis-
tribution of y, and let us denote Pr(y = k|x) by pi(x). The population minimizer
is then defined as:

K
F*(x) =argg(ixr§2pk(><)-LKxK(hF(X))- (8)
k=1

For loss matrices (B))- () we obtain, respectively:

F”(x) = arg max py(x), 9)

F*(x) = mediany, (x)(y) = mediany|«(y), (10)
K

F(x) =) k-pr(x) = Byx(y)- (11)
k=1

In () it is assumed that the range of F(x) is a set of real values.
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The interesting corollary from the above is that in order to solve ordinal
classification problem one can use any multi-class classification method that
estimates pg(x), k € K. This can be, for example, logistic regression or gradient
boosting machine [9]. A final decision is then computed according to (§) with
respect to chosen loss matrix. For (B)-(d) this can be done by computing mode,
median or average over y with respect to estimated py(x), respectively. For loss
matrix entries defined by (@) one can use any regression method that aims at
estimating Fy|(y). We refer to such an approach as simple ordinal classifier.

Let us notice that multi-class classification problem is often solved as K (one
class against K — 1 classes) or K x (K — 1) (one class against one class) binary
problems. However, taking into account the order on y, we can solve the ordinal
classification by solving K — 1 binary classification problems. In the k-th (k =
1,..., K — 1) binary problem, objects for which y < k are labeled as y' = —1
and objects for which y > k are labeled as 3’ = 1. Such an approach has been
used in [6].

The ordinal classification problem can also be formulated from a value func-
tion perspective. Let us assume that there exists a latent value function that
maps objects to scalar values. The ordered classes correspond to contiguous in-
tervals on a range of this function. In order to define K intervals, one needs
K + 1 thresholds: g = —oc0o < 01 < ... < Og_1 < 0 = oo. Thus k-th class
is determined by (fx—_1,0x]. The aim is to find a function F(x) that is possi-
bly close to any monotone transformation of the latent value function and to
estimate thresholds {0} . Then, instead of the loss matrix (@) one can use
immediate-threshold or all-threshold loss [I7] defined respectively as:

L™ (y, F(x)) = L(1, F(x) = 0y-1) + L(~1, F(x) - 6,), (12)
y—1 K—-1

Ly, F(x)) = > L(L, F(x) = 0k) + Y L(=1,F(x) = 0;).  (13)
k=1 k=y

In the above, L(y, f) is one of the standard binary classification loss functions.
When using exponential or deviance loss, (I2) and (I3]) become continuous and
convex functions that are easy to minimize.

There is, however, a problem with interpretation what does minimization of
expected threshold loss estimate. Only in the case when 0-1 loss is chosen as the
basis of (I2)) and ([3)), the population minimizer has a nice interpretable form.
For (I2)), we have:

K
F"(x) = arg min > pr(x) - LT (k, F(x)) = argmaxpe(x),  (14)

k=1

and for (I3]), we have:

K
F*(x) = axgmin Y pe(x) - L' (k. F(0) = mediano(y).  (19)
k=1
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An interesting theoretical result is obtained in [15], where (I2)) and ([I3]) are used
in derivation of the upper bound of generalization error for any loss matrix ().

Threshold loss functions were already considered in building classifiers. In [I7]
the classifier was learned by conjugate gradient descent. Among different base
loss functions, also deviance was used. In [I8BIT5], a generalization of SVM
(support vector machines) was derived. The algorithm based on AdaBoost [§]
was proposed in [I5]. In the next section, we present two algorithms based on
forward stagewise additive modeling. The first one is an alternative boosting
formulation for threshold loss functions. The second one is an extension of the
gradient boosting machine [9].

Let us remark at the end of our theoretical considerations that (I3) can also
be formulated as a specific case of so-called rank loss [I3|[7I4]:

Lyank (41,42, F(x1), F(x2)) = L(sgn(y1 — 42), F(x1) — F(x2)).  (16)

This loss function requires that all objects are compared pairwise. Assuming
that thresholds {6 }~! are values of F(x) for some virtual objects/profiles
and all other objects are compared only with these virtual profiles, one obtains
([@3). Rank loss was used in [13] to introduce a generalization of SVM for ordinal
classification problems, and in [7], an extension of AdaBoost for ranking problems
was presented. The drawback of this approach is the complexity of empirical risk
minimization defined by rank loss that grows quadratically with the problem size
(number of training examples). For this reason we do not use this approach in
our study.

3 Ensemble of Decision Rules for Ordinal Classification

The introduced algorithms generating an ensemble of ordinal decision rules are
based on forward stagewise additive modeling [I2]. The decision rule being the
base classifier is a logical expression having the form: if [conditions|, then
[decision]. If an object satisfies conditions of the rule, then the suggested de-
cision is taken. Otherwise no action is performed. By conditions we mean a
conjunction of expressions of the form z; € S, where S is a value subset of j-th
attribute, j € {1,...,n}. Denoting set of conditions by @ and decision by «, the
decision rule can be equivalently defined as:

a if x € cov(P),
r(x,¢) = {O if x & cov(P), (17)
where ¢ = (@, ) is a set of parameters. Objects that satisfy @ are denoted by
cov(P) and referred to as cover of conditions .

The general scheme of the algorithm is presented as Algorithm [l In this
procedure, F,,(x) is a real function being a linear combination of m decision
rules r(x, c), {Hk}{(_l are thresholds and M is a number of rules to be generated.
L% (y;, F(x)) is an all-threshold loss function. The algorithm starts with Fp(x) =
0 and {6}~ = 0. In each iteration of the algorithm, function F,, 1(x) is
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Algorithm 1. Ensemble of ordinal decision rules
input : set of training examples {y;,x;}7,
M — number of decision rules to be generated.
output: ensemble of decision rules {r,(x)}{?,
thresholds {6} ~*
Fo(x) :=0; {fro} 71 = 0;
for m =1 to M do
(e 035" = argming o 1) SN, L (i, P (1) + (3 )
rm (X, c) := r(x,c);
{Okm 317" = {063
Frn(x) := Fr—1(x) + rm(x, €);
end
ensemble = {rm(x,c)}; thresholds = {fpar } 77

augmented by one additional rule 7,,(x,c). A single rule is built by sequential
addition of new conditions to @ and computation of a. This is done in view of
minimizing

Lm:ZLa” yzv m— 1(xz)+ (qu ))

yi—1 K—1
= Z ( Z L(1, B (%) + o — 6;) + Z L(—1,F(X{)m_1 +a — ek)>
k=1

x; Ecov(P) k=y;
yi—1 K—-1

+ ) ( > L, Fpoa(xi) = 0k) + Y L(=1, F(X)m-1 — 9@) (18)
x;Zcov(P) k=1 k=y;

with respect to @, a and {Gk}{(_l. A single rule is built until L,, cannot be
decreased.
Ordinal classification decision is computed according to:

Zk I (Z (X, ) € [ak_l,ek)> : (19)

m=1

where I(a) is an indicator function, i.e. if a is true then I(a) = 1, otherwise
I(a) = 0. Some other approaches are also possible. For example, in experiments
we have used a procedure that assigns intermediate values between class labels
in order to minimize squared error.

In the following two subsections, we give details of two introduced algorithms.

3.1 Ordinal Decision Rules Based on Exponential Boosting
(ORDER-E)

The algorithm described in this subsection can be treated as generalization of
AdaBoost [8] with decision rules as base classifiers. In each iteration of the
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algorithm, a strictly convex function (I8)) defined using the exponential loss Legy
is minimized with respect to parameters @, a and {0z} ~!. In iteration m, it
is easy to compute the following auxiliary values that depend only on F,,_1(x)
and &:

A = Y Iy > ke M0 B, = N Iy < k)elmi O

xiEcov(P) x; Ecov(P)
Crm= Y I(y>ke G0 D= 3" Iy, < k)efm100)
x;Zcov(P) x;Zcov(Pd)

These values are then used in computation of the parameters. The optimal values
for thresholds {#)}1*~* are obtained by setting the derivative to zero:
0Ly, 1 By, - exp(a) + Dy,

=0& 0= _log

00, 2 Ay exp(—a) + Ch ’ (20)

where parameter « is still to be determined. Putting (20) into (), we obtain
the formula for L,,:

K—-1
Lm =2 /(B -exp(a) + Di)(A - exp(—a) + Cy). (21)
k=1

which now depends only on single parameter «. The optimal value of « can be
obtained by solving
oL B Cpex (o) — Ay - Dy - exp(—a)
m_ e Z k- Uk P k k % —0  (22)
da = \/(Bi - exp(@) + Di)(A - exp(—a) + Cy)
There is, however, no simple and fast exact solution to ([22). That is why we
approximate a by a single Newton-Raphson step:

oL, (82Lm>_1
a=og—V- .

oo 0%« (23)

a=qQ

computed around zero, i.e. ag = 0. Summarizing, a set of conditions @ is cho-
sen which minimizes ([21]) with « given by (23]). One can notice the absence of
thresholds in the formula for L,, ZI)). Indeed, thresholds are necessary only for
further classification and can be determined once, at the end of induction proce-
dure. However, L,, (2I)) is not additive anymore, i.e. it is not the sum of losses
of objects due to implicit dependence between objects through the (hidden)
thresholds values.

Another boosting scheme for ordinal classification has been proposed in [14].
Similar loss function has been used, although expressed in terms of margins
(therefore called “left-right margins” and “all-margins” instead of “immediate-
thresholds” and “all-thresholds”). The difference is that in [T4] optimization over
parameters is performed sequentially. First, a base learner is fitted with o = 1.
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Then, the optimal value of « is obtained, using thresholds values from previous
iterations. Finally, the thresholds are updated. In section Fl we compared this
boosting strategy with our methods, showing that such a sequential optimization
does not work well with decision rule as a base learner.

3.2 Ordinal Decision Rules Based on Gradient Boosting
(ORDER-G)

The second algorithm is an extension of the gradient boosting machine [9]. Here,
the goal is to minimize ([I8)) defined by deviance loss Lge,. @ is determined by
searching for regression rule that fits pseudoresponses y; being negative gradi-
ents:

LG (yi, F (%))

_ dev

Yi = OF (x:) (24)

F(xi):Fm_l(xi)

with {0135 determined in iteration m — 1. The regression rule is fit by
minimization of the squared-error loss:

Yo @i Faalx)—a?+ Y (i~ Faoaa)”. (25)

xi€cov(P) x;Zcov(P)

The minimum of (28) is reached for

d= Y Wi Faala)/ Y L (26)

xi€cov(P) x; Ecov(P)
The optimal value for « is obtained by setting

0L, _0

da
with @ already determined in previous step. However, since this equation has no
closed-form solution, the value of « is then approximated by a single Newton-
Raphson step, as in @3). Finally, {0y, }2 ' are determined by

0L,

90y, =0.

Once again, since there is no closed-form solution, 6y, is approximated by a
single Newton-Raphson step,

OLpm [ 0%Ly\
ek:m = ekmfl - . < )

b

aakm 82914:771

Okm=0km—1

with @ and « previously determined.
Notice that the scheme presented here is valid not only for Lge,, but for any
other convex, differentiable loss function used as a base loss function in (Ig]).
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4 Experimental Results

We performed two experiments. Our aim was to compare simple ordinal classi-
fiers, ordinal decision rules and approaches introduced in [3IT4]. We also wanted
to check, how the introduced approaches works on Netflix Prize dataset [16].
As a comparison criteria we chose zero-one error (ZOE), mean absolute error
(MEA) and root mean squared error (RMSE). The former two were used in
referred papers. RMSE was chosen because of Netflix Prize rules.

The simple ordinal classifiers were based on logistic regression, LogitBoost
[T0/9] with decision stumps, linear regression and additive regression [9]. Imple-
mentations of these methods were taken from Weka package [20]. In the case
of logistic regression and LogitBoost, decisions were computed according to the
analysis given in section @ In order to minimize, ZOE, MAE and RMSE a fi-
nal decision was computed as a mode, median or average over the distribution
given by these methods, respectively. We used three ordinal rule ensembles. The
first one is based on ORBoost-All scheme introduced in [14]. The other two are
ORDER-E and ORDER-G introduced in this paper. In this case, a final decision
was computed according to ([I9) in order to minimize ZOE and MAE. For mini-
mization of RMSE, we have assumed that the ensemble constructs Fjs(x) which
is a monotone transformation of a value function defined on an interval [1, 5] C R.
In classification procedure, values of Fjs(x) are mapped to [1,5] C R by:

K

Flx) = Z (k N FM(X)Q_k (_91;: 91@71)/2) I(Far(x) € [0r-1,01)),
k=1 -t

where 0 = 60 — 2 - (92 — 91) and O = 0_1+2- (9[(,1 — 91(72). These meth-
ods were compared with SVM with explicit constraints and SVM with implicit
constraints introduced in [3] and with ORBoost-LR and ORBoost-All with per-
ceptron and sigmoid base classifiers introduced in [I4].

In the first experiment we used the same datasets and settings as in [3T4]
in order to compare the algorithms. These datasets were discretized by equal-
frequency bins from some metric regression datasets. We used the same K = 10,
the same “training/test” partition ratio, and also averaged the results over 20
trials. We report in Table 2] the means and standard errors for ZOE and MEA
as it was done in the referred papers. In the last column of the table we put the
best result found in [3IT4] for a given dataset. The optimal parameters for simple
ordinal classifiers and ordinal rule ensembles were obtained in 5 trials without
changing all other settings.

Second experiment was performed on Netflix Prize dataset [16]. We chose 10
first movies from the list of Netflix movies, which have been evaluated by at
least 10 000 and at most 30 000 users. Three types of error (ZOE, MEA and
RMSE) were calculated. We compared here only simple ordinal classifiers with
ORDER-E and ORDER-G. Classifiers were learned on Netflix-training dataset
and tested on Netflix-probe dataset (all evaluations from probe dataset were
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Table 2. Experimental results on datasets used in [314]. The same data preprocess-
ing is used that enables comparison of the results. In the last column, the best re-
sults obtained by Y'SVM with explicit constraints 3, 2SVM with implicit constraints
8], ¥ ORBoost-LR [14], and ¥ ORBoost-All [I4] are reported. Two types of error are
considered (zero-one and mean-absolute). Best results are marked in bold among all
compared methods and among methods introduced in this paper.

Zero-one error (ZOE)
Dataset Logistic LogitBoost ORBoost-All ORDER-E ORDER-G Best result
Regression with DS with Rules from [3I[14]
Pyrim. 0.754£0.017 0.773£0.018 0.852+0.011 0.75440.019 0.7794+0.018 0.719+0.066°
CPU 0.64840.009 0.58740.012 0.72240.011 0.594+0.014 0.56240.009 0.605+0.010%
Boston 0.615+0.007 0.58140.007 0.653+0.008 0.560+0.006 0.58140.007 0.549+0.007°
Abal.  0.678+0.002 0.694+0.002 0.761+0.003 0.7104£0.002 0.71240.002  0.71640.002>
Bank  0.679+0.001 0.69340.001 0.85240.002 0.754+0.001 0.75940.001  0.74440.005"
Comp. 0.48940.001 0.49440.001 0.59340.002 0.476-0.002 0.479+0.001 0.462+0.001"
Calif.  0.665+0.001 0.60640.001 0.773+0.002 0.631+0.001 0.60940.001 0.605+0.001°
Census 0.70740.001 0.665+0.001 0.79340.001 0.691+0.001 0.687+0.001  0.69440.001>
Mean absolute error (MAE)
Dataset Logistic LogitBoost ORBoost-All ORDER-E ORDER-G Best result
Regression with DS with Rules from [3[14]
Pyrim. 1.6654+0.056 1.754£0.050 1.858+0.074 1.30640.041 1.3561+0.063 1.29440.046>
CPU 0.9344:0.021  0.90540.025 1.16440.026 0.878+0.027 0.84340.022 0.889+0.019%
Boston 0.903+0.013 0.90840.017 1.068+0.017 0.813+0.010 0.82840.014 0.74740.0112
Abal.  1.2024+0.003 1.27240.003 1.52040.008 1.257+0.002 1.28140.004  1.36140.003>
Bank 1.44540.003 1.568+0.003 2.18340.005 1.605+0.005 1.61140.004 1.393+0.0027
Comp. 0.628+0.002 0.61940.002 0.93040.005 0.583+0.002 0.58840.002  0.59640.0022
Calif.  1.13040.004 0.95740.001 1.646+0.007 0.955+0.003 0.89740.002 0.9424-0.002*
Census 1.4324:0.003 1.17240.002 1.66940.006 1.152-0.002 1.166-+0.002  1.19840.002%

removed from training dataset). Ratings on 100 movies, selected in the same way
for each movie, were used as condition attributes. For each method, we tuned its
parameters to optimize its performance, using 10% of training set as a validation
set; to avoid favouring methods with more parameters, for each algorithm we
performed the same number of tuning trials. The results are shown in Table

The results from both experiments indicate that ensembles of ordinal decision
rules are competitive to other methods used in the experiment:

— From the first experiment, one can conclude that ORBoost strategy does
not work well with decision rule as a base learner, and that simple ordi-
nal classifiers and ordinal decision rules perform comparably to approaches
introduced in [3I14].

— The second experiment shows that especially ORDER-E outperforms other
methods in RMSE for most of the movies and in MAE for half of the
movies. However, this method was the slowest between all tested algorithms.
ORDER-G is much more faster than ORDER-E, but it obtained moderate
results.

— In both experiments logistic regression and LogitBoost perform well. It is
clear that these algorithms achieved the best results with respect to ZOE.
The reason is that they can be tailored to multi-classification problem with
zero-one loss, while ordinal decision rules cannot.
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Table 3. Experimental results on 10 movies from Netflix Prize data set. Three types of
error are considered (zero-one, mean-absolute and root mean squared). For each movie,

best results are marked in bold.

Zero-one error (ZOE)

Movie # Linear Additive Logistic LogitBoost ORDER-E ORDER-G
Regression Regression  Regression with DS
8 0.761 0.753 0.753 0.714 0.740 0.752
18 0.547 0.540 0.517 0.493 0.557 0.577
58 0.519 0.496 0.490 0.487 0.513 0.496
7 0.596 0.602 0.583 0.580 0.599 0.605
83 0.486 0.486 0.483 0.398 0.462 0.450
97 0.607 0.607 0.591 0.389 0.436 0.544
108 0.610 0.602 0.599 0.593 0.613 0.596
111 0.563 0.561 0.567 0.555 0.572 0.563
118 0.594 0.596 0.532 0.524 0.511 0.551
148 0.602 0.610 0.593 0.536 0.522 0.573
Mean absolute error (M AE)
Movie # Linear Additive Logistic LogitBoost ORDER-E ORDER-G
Regression Regression  Regression with DS
8 1.133 1.135 1.115 1.087 1.013 1.018
18 0.645 0.651 0.583 0.587 0.603 0.613
58 0.679 0.663 0.566 0.543 0.558 0.560
7 0.831 0.839 0.803 0.781 0.737 0.755
83 0.608 0.614 0.519 0.448 0.500 0.502
97 0.754 0.752 0.701 0.530 0.537 0.654
108 0.777 0.776 0.739 0.739 0.768 0.739
111 0.749 0.766 0.720 0.715 0.693 0.705
118 0.720 0.734 0.626 0.630 0.596 0.658
148 0.747 0.735 0.688 0.626 0.604 0.659
Root mean squared error (RMSE)
Movie # Linear Additive Logistic LogitBoost ORDER-E ORDER-G
Regression Regression  Regression with DS
8 1.332 1.328 1.317 1.314 1.268 1.299
18 0.828 0.836 0.809 0.856 0.832 0.826
58 0.852 0.847 0.839 0.805 0.808 0.817
7 1.067 1.056 1.056 1.015 0.999 1.043
83 0.775 0.772 0.737 0.740 0.729 0.735
97 0.968 0.970 0.874 0.865 0.835 0.857
108 0.984 0.993 0.969 0.979 0.970 0.989
111 0.985 0.992 0.970 0.971 0.967 0.986
118 0.895 0.928 0.862 0.860 0.836 0.873
148 0.924 0.910 0.900 0.863 0.838 0.893

— It is worth noticing, that regression algorithms resulted in poor accuracy in
many cases.

— We have observed during the experiment that ORDER-E and ORDER-G
are sensitive to parameters setting. We plan to work on some simple method
for parameters selection.

5 Conclusions

From the theoretical analysis, it follows that ordinal classification problem can
be solved by different approaches. In our opinion, there is still a lot to do in or-
der to establish a theoretic framework for ordinal classification. In this paper, we
introduced a decision rule induction algorithm based on forward stagewise addi-
tive modeling that utilizes the notion of threshold loss function. The experiment
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indicates that ordinal decision rules are quite promising. They are competitive
to traditional regression and multi-class classification methods, and also to ex-
isting ordinal classification methods. Let us remark that the algorithm can also
be used for other base classifiers like decision trees instead of decision rules. In
this paper, we remained with rules because of their simplicity in interpretation.
It is also interesting that such a simple classifier works so well as a part of the
ensemble.
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Abstract. At the International Research and Educational Institute for
Integrated Medical Sciences (IREIIMS) project, we are collecting com-
plete medical data sets to determine relationships between medical data
and health status. Since the data include many items which will be cat-
egorized differently, it is not easy to generate useful rule sets. Sometimes
rare rule combinations are ignored and thus we cannot determine the
health status correctly. In this paper, we analyze the features of such
complex data, point out the merit of categorized data mining and pro-
pose categorized rule generation and health status determination by us-
ing combined rule sets.

1 Introduction

Medical science and clinical diagnosis and treatment has been progressing rapidly
in recent years with each field becoming more specialized and independent. As
a result, cooperation and communication among researchers in the two fields
has decreased which has led to problems between both communities, not only in
terms of medical research but also with regard to clinical treatment. Therefore,
an integrated and cooperative approach to research between medical researchers
and biologists is needed. Furthermore, we are living in a changing and quite
complex society, so important knowledge is always being updated and becom-
ing more complex. Therefore, integrated and cooperative research needs to be
extended to include engineering, cultural science, and sociology.

As for medical research, the integration of conventional (Western) and uncon-
ventional (Eastern) medical research, which should be fundamentally the same
but in fact are quite different, has been suggested.

With this situation in mind, we propose a framework called Cyber Integrated
Medical Infrastructure (CIMI) [Abe et al., 2007a] which is a framework of in-
tegrated management of clinical data on computer networks consisting of a
database, a knowledge base, and an inference and learning component, which

Z.W. Ra$, S. Tsumoto, and D. Zighed (Eds.): MCD 2007, LNATI 4944, pp. 182-{I35] 2008.
© Springer-Verlag Berlin Heidelberg 2008
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Fig. 1. Cyber Integrated Medical Infrastructure

are connected to each other in the network (Figlll). In this framework, medical
information (e.g. clinical data) is analyzed or data mined to build a knowledge
base for the prediction of all possible diseases and to support medical diagnosis.

For medical data mining, several techniques such as Inductive Logic Pro-
gramming (ILP), statistical methods, decision tree learning, Rough Sets and
KeyGraph have been applied (e.g. [[chise and Numao, 2005], [Ohsawa, 2003] and
[Tsumoto, 2004]) and acceptable results have been obtained. We have also ap-
plied C4.5 [Quinlan, 1993] to medical data and obtained acceptable results. How-
ever, we used incomplete medical data sets which lack many parts of the data,
since the data were collected during clinical examination. To save costs, physi-
cians do not collect unnecessary data. For instance, if certain data are not related
to the patient’s situation, physicians will not collect them. If parts of the data
are missing, even if we can collect many data sets, some of them are ignored
during simple data mining procedures. To prevent this situation, we need to
supplement missing data sets. However, it is difficult to automatically supple-
ment the missing data sets. In fact, to supplement missing data sets, Ichise pro-
posed a non-linear supplemental method [Ichise and Numao, 2003|, but when
we collected data from various patients it was difficult to guess relationship
among the data, so we gave up to the idea of introducing such a supplemental
method. Instead, we introduced a boosting method which estimates the distri-
bution of original data sets from incomplete data sets and increases data by
adding Gaussian noise [Abe et al., 2004]. We obtained results with robustness
but we could not guarantee the results. In addition, when we used data sets col-
lected in clinical inspections, we could only collect a small number of incomplete
data sets. Therefore, in the International Research and Educational Institute for
Integrated Medical Science (IREIIMS) project, we decided to collect complete
medical data sets. Currently, we could have collected only 1800 medical data
sets, though they will be increasing by the scheduled medical data collections.
Even if we collect considerable size of complete data sets, we still have additional
problems. The data include various types of data. That is, they contain data, for
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instance, of persons with lung cancer, those with stomach cancer etc. It is some-
times hazardous to use such mixed and complex data to perform data mining.
In [Abe et al., 2007a], we pointed out that if we deal with multiple categorized
(mixed) data, it is rather difficult to discover hidden or potential knowledge
and we proposed integrated data mining. In [Abe et al., 2007b|, we proposed an
interface for medical diagnosis support which helps the user to discover hidden
factors for the results. In this study, we introduce the interface to help to discover
rare, hidden or potential data relationships.

In this paper, we analyze the collected medical data consisting of multiple
categorized items then propose categorized rule generation (data mining) and
a health levell determination method by applying the combined rule sets. In
Section 2, we briefly describe the features of the collected medical data. In Section
3, we analyze (data mine) the collected data by C4.5 and apply generated rule
sets to the medical data to determine the patients’ situations. In section 4, we
analyze the data mined results to point out the limitation of simple data mining
of the collected data. In section 5, we suggest several strategies to deal with
complex data that enable better health level determination.

2 Features of the Collected Medical Data

In this section, we analyze and describe features of the medical data collected in
the IREIIMS project.

To construct the database in CIMI, we are now collecting various types of
medical data, such as those obtained in blood and urine tests. We have col-
lected medical data from about 1800 persons (For certain persons, the data were
collected more than once.) and more than 130 items are included in the med-
ical data of each person. Item sets in the data are, for instance, total protein,
albumin, serum protein fraction-al-globulin, Na, K, Ferritin, total acid phos-
phatase, urobilinogen, urine acetone, mycoplasma pneumoniae antibody, cellular
immunity, immunosuppressive acidic protein, Sialyl Le X-i antigen, and urine 52-
microglobulin. In addition, health levels are assigned by physicians resulting from
the medical data and by clinical interviews. Health levels that express the health
status of patients are defined based on Tumor stages [Kobayashi and Kawakubo,
1994] and modified by Matsuoka. Categorization of the health levels is shown
in Fig. 2 (“%” represents a typical distribution ratio of persons in each level.).
Persons at levels I and II can be regarded as being healthy, but those at levels
IIT, IV, and V can possibly develop cancer. In [Kobayashi and Kawakubo, 1994],
level TIT is defined as the stage before the shift to preclininal cancer, level IV is
defined as conventional stage 0 cancer (G0), and level V is defined as conven-
tional stages 1-4 cancer (G1-G4).

As shown in Fig. @ Kobayashi categorized health levels into 5 categories.
For more detailed analysis, Matsuoka categorized health levels into 8 categories
which are 1, 2, 3, 4a, 4b, 4c, ba, and 5b, since levels 4 and 5 include many
clients’ data. Table [l shows the distribution ratio of health levels of the collected

! Health level is explained in section
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Fig. 2. Health levels

Table 1. Health levels

health level 1 2 3 4a  4b 4c 5a  bb
ratio (%) 0.0 0.0 3.09 17.23 46.99 19.22 10.77 2.71
ratio (%) 0.0 0.0 3.09 83.44 13.48

data. The distribution ratio is quite different from that shown in Fig. 2l as we
are currently collecting data from office workers (aged 40 to 50 years old) but
not from students or younger persons. Accordingly the data distribution shifts
to level 5 and 80% of the data are assigned to level 4. This imbalance and
distribution might influence the data mining results. However, in this study,
we did not apply any adjustments as we have no idea or models for proper
adjustment. Adjustments will be proposed after analysis of the data sets.

3 Analysis of the Data

In this section, we analyze the collected medical data. First, we simply apply C4.5
to obtain relationships between the health levels and medical data sets. Then
we apply the obtained relationships to medical data to estimate the patient’s
health situation. If we have the actual health level information, we can determine
whether obtained rule sets are good or not. In addition, we can obtain the
features of medical data sets.

3.1 Data Analysis by C4.5

First to determine the features of the data, we simply applied C4.5 to the col-
lected data. To check the effect of data size, we analyzed both 1200 and 1500
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medical data sets that were chronologicallyﬁ extracted from 1800 medical data
sets. Both results are shown below.

— 1200 medical data sets
ICTP <= 5.8
TK activity <= 5.4
CEA <= 4.1
EBV-VCA-IgG <= 640
| v-seminoprotein <= 2.15
| | Chloride (Cl) <= 96
| | | CK <=82 : 4b
| I | CK> 82 : 4c
|

|
|
|
|
|
|
|
| | Chloride (Cl) > 96

— 1500 medical data sets
TK activity <= 5.4
ICTP <= 5.8
CYFRA <= 2.1
7 -seminoprotein <= 2.1
| EBV-VCA-IgG <= 640
| | Chloride (Cl) <= 96
| | | B-Cell(CD20) <= 22 : 4b
| | | B-Cell(CD20) > 22 : 4c
| | Chloride (Cl) > 96
|

I
I
I
I
I
I
I
I
| | | CEA <= 4.2

Since the data set size will not be large enough for general data mining, there
are some differences between the results of 1200 medical data sets and 1500
medical data sets. If we can collect more medical data sets, we will be able
to obtain more stable results. Nevertheless, even from current data, acceptable
results can be obtained. If we focus on the first few lines, they are almost the
same.

3.2 Applying the Result to Determine Health Levels

Next, we applied the obtained rule sets (decision trees) to the rest of the collected
medical data to determine the health levels. For the results from 1200 medical
data sets, we can estimate the health levels of about 600 (=1800—1200) persons’
health levels. For the result from 1500 medical data sets, we can estimate the
health levels of about 300 (=1800—1500) persons’ health levels. A series of nodes
in a decision tree is used to determine the health level. This is a first trial to
use the data mined rule sets for medical diagnosis. Therefore, we do not have

2 “Chronological” extraction is performed because we aim to use generated rule sets
to determine health levels. It is natural to use previous data sets to generate models
for future estimation.
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Table 2. Health level estimation

from 1200 data  from 1500 data
Difference Correct ratio (%) Correct ratio (%)

-3 1.4 1.1
—2 6.3 3.7
-1 19.2 23.1

0 424 38.4
+1 23.9 25.4
+2 4.8 6.7
+3 1.8 1.1
+4 0.2 0.0

any model and currently the combination of multiple decision tree clusters is
not considered. We adopt a very simple strategy to follow a decision tree from
the root point (top of a decision tree) to a leaf. Table Bl shows accuracies of the
results. For difference, we mean that if the estimated health level is 4b and the
actual level is 4c, then the difference is —1. If the estimated health level is 4b
and the actual level is 3, the difference is +2. Of course, if the estimated and
actual health levels are the same, the difference is 0.

An exact estimation (0 estimation) ratio is about 40%. Generally, this is not
a good result. However, if we regard both +1 and —1 as correct estimations, the
ratio becomes about 85% which is usually regarded as a good result. Even for
us, it is sometimes rather difficult to distinguish level 4a from 4b, so it might be
acceptable to extend the correct estimation to +1 and —1. In addition, we could
not find any superiority due to the size of the data sets. In fact, as for an exact
estimation, rules generated from 1200 data sets are better than those generated
from 1500 data sets. The difference in number is only 300, so it might be difficult
to find a superiority due to the size of the data sets. From the accuracy ratio,
in medical situations, it might be difficult to use the generated rule sets as they
are. However, with a certain modification or improvement, they can help to
determine the health levels of patients during medical diagnosis.

After obtaining the results, for us, it is more interesting and significant to
find the reasons for incorrect estimations. From these reasons, we can propose a
proper strategy for reducing incorrect estimations. In the next section, we ana-
lyze the results in detail and try to find the reasons for incorrect estimation.

4 Analysis of Results

In this section, we analyze the reasons for incorrect estimations by using
the interface proposed in [Abe et al., 2007b] which can deal with data inter-
actively. Figure [3 shows a result (decision tree) obtained in the web browser
interface. In the browser, the left tab shows ID lists of a person such as 1186
and the right tab shows a decision tree. In the decision tree, “White blood cell
differentiation:Neutro > 66.1: 5a(2/1/0)” can be interpreted as “... and if
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Fig. 3. Analysis result shown in the proposed interface

i Flle Edit Yiew Go Bookmarks Tools Window Help
E?c'k VFu%ard'R?nad éﬁp [& 1| 2 Search| S5 Print T
7 ’n'iHums | wkBookmarks # Intemnet (- Lookup (5 New&.Cool £ hitp:iwsn.
1Y ) R ¥
BRI Lth level Ba
e (105, 20061050, 6), (1065, 200702095y, (1199, 200702 21, 8
9L (7-01=10 4c Value Range
gJ (7-01-12 4b
ooy | [P et R
q U7-02-16 E White blood cell
] (B-11-13 4c lcounts (WBC)
B —02-16 4c [Red blood cell fractlonatlon A1b
-%9 5:9 :01 S ;O”“ti (E}?C) lfrotem fractionat:
0307 dh emoglobin i i
& E-12-07 4c [Hematocr: Protein fractionat:
5 E13-13 4 Platelet count 2 = =
g T :16 g MW Protein fractionat:
U0l-15 4b MCH Protein fractionat.
: ([=01=19 4b W CEHE
A e [ | (Mite blood ool] WP el |
i T7-01=25 4b . differntiation:Neutro ALP type2
7-01-29 45 White blood cell ALP type3
7 8 — ’0 b differntiation:Stab FIP typed |
e [Phite blood cell D
g 8 = :%g g (differntiation:Seg QEE ‘Eypeg
07~02-07 4b ihite blood cell £ BRE
702 a differntiation:Lymphocyte. LlPﬁEjS
R o b White blood cell PEsz_.nogenl
? 8 L g differntiation:Mono Pepsinogen?
) [hite blood ceIl Pepsinogenl/2 ratidy
Fia |/ == —
[T o=l

Fig. 4. Health level estimation result

White blood cell differentiation:Neutro > 66.1 then the health level is ba.”
In addition, the generated rule set (series of nodes) can explain three per-
sons of which two explanations are correct and one is incorrect. When the
user clicks the link point “5a(2/1/0),” another browser appears (Fig. H). In the
browser, <1199,2007-02-21,4a> shows that an estimation of ID 1199 is incorrect
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Fig. 5. Data of 1D:1199

(blue colored and the assigned level is 4a; the actual level is 5a). When the user
clicks the link point “<1199,2007-02-21,4a>,” another browser appears (Fig. ().
In this case, even if we review the medical data, if we are not physicians we
cannot determine whether the person is in level 4a or 5a. However we can ask
physicians for reasons or confirmation. In contrast, we also found a case where,
in spite of the assigned health level being 4b, the estimated level was 3. Simi-
larly to the above case, we checked the data to find that NSE is 7.8 but it was
not considered during the estimation. Actually in the decision tree the following
pattern appears but in the estimation process, the system cannot refer to the
rule. That is, the pattern does not appear in the inference path to determine the
health levels.

NSE > 7.2 .....

Lipase <= 20

Albumin <= 4.3: 4a

Albumin > 4.3:

| Na <= 139: 3

| Na > 139

| | Protein fractionation: = <= 17.5

| | | Acid Phosphatase (ACP) <= 8.3 : 4b

In fact, as shown in Table [I, only 3% are in level 3. Thus the number of
examples is too small to generate proper rules or models, so it will be necessary
to collect more data in level 3. In fact, none of the persons in health level 3 have
been estimated correctly. Cases where the an estimation of the health level is 4a
may be satisfactory, but some cases are estimated as 4b or 4c¢ which cannot be
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regarded as correct. From these cases, we can say that the number of examples
in health level 3 is too small to generate a proper model.

First, for this type of phenomenon, we assumed that a rare case might be
present in level 4x. That is, some of the items that would place a person in level
4x are rare. However, as shown above, the decision tree includes rules of NSE for
level 4x. Accordingly, since a combination of NSE and certain factors for level 4
are rare, the system cannot determine the health levels correctly by using such
rules.

As suggested in section 2] imbalance and the non-standard distribution of data
play a negative role in modeling. In fact, we intentionally remove any imbalance
in the data, that is, we reduce the data according to the number of persons in
level 3. The data contain only 300 samples (all levels have about 50 data), so the
number is too small to generate a proper model. The result is not satisfactory
as a diagnosis system but shows that balanced data will generate better models
for medical diagnosis. If we can collect many data, we will be able to modify
them. However currently this is not possible, so to overcome this problem, it is
necessary to apply or develop another type of modeling.

5 Proposal for the Complex Data Treatment

In the previous section, we analyzed the collected medical data and showed
several problems with the data mining of the collected data and the application
of generated rules to determine health levels. We found at least three features
of the collected medical data as shown below:

1) The collected data showed imbalance and did not follow the standard
distribution.

2) Proper models might not be generated for health level 3 due to the small
number of examples in this level.

3) Parts of the generated rules cannot be referred to in health level
determination.

Due to the features of the collected medical data, a simple data mining method
cannot be applied to them to obtain a satisfying result. As for 3), for estimating
health levels, currently our medical diagnosis system can only follow a series of
nodes in a decision tree. In fact, a decision tree has many points of division,
so that after a certain division of the tree, the system cannot refer to rule sets
on the other decision tree clusters that might be necessary for proper health
level determination. Thus the data contains several problems for data mining,
but currently we cannot correct or improve the data future. Therefore, it is
necessary to develop methods that can remove or relief the above problems.

In the below, we show two methods to overcome the above problems.

5.1 Majority Rule Criterion Application Strategy

We previously proposed boosting method which tried to improve the distribution
of the original incomplete data sets and increases data by adding Gaussian noise
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Table 3. Results: majority rule criterion application strategy

hit rate average of 5 results 25.52%
hit and near miss rate average of 5 results 68.28%
hit rate majority rule criterion applied 39.93%

hit and near miss rate majority rule criterion applied 86.19%

|Abe et al., 2004]. However we cannot guarantee the result by data mining the
pseudo-data. Since now we have complete medical data set, it would be better
to adopt another type of data treatment.

To solve the problem (1), it is necessary to remove or relief harmful effects
of imbalance of data. For that, one of simple methods is to divide whole data
into several data sets and data mine each data sets. Then, generated multiple
results are compared each other to take major results into consideration during
health level determination. Our assumption is that by dividing data set, part of
imbalance data will become minority of the whole data sets.

For instance, when we obtain 3 level 4a results and 2 level 4b results, the
estimated health level is 4a. When we obtain 1 level 3 result, 2 level 4a results,
and 2 level 4b results, the estimated health level is 4a. On the other hand, when
we obtain 1 level 4c result, 2 level 4a results, and 2 level 4b results, the estimated
health level is 4b. For the special case where the distribution is the same, we
will use the middle level. For instance, when we obtain 2 level 4a, 1 level 4b,
and 2 level 4c, the estimated health level is 4b. For a simplification, we currently
regard the distance between neighbour levels is the same. That is, the distance
between level 3 and 4a and that between level 4a and 4b is the same. Of course,
strictly speaking, the distance between level 3 and 4a and that between level 4a
and 4b should be different. Because in general, level 3 and 4 are quite different
in the medical sense. This treatment might cause another problem, but in this
paper we ignore this type of problem.

In fact, we currently have only 1800 data sets. If we divide the data into 5
data sets plus another data set for an estimation, each data set has only 281
data, which seem rather small number. Therefore, results might be miserable,
but our main aim is to check whether majority rule criterion application strategy
can solve the problem (1) or not. We obtained the result shown in Table

Since currently we have rather small number of data, and we adopt a non-
sensitive level selection strategy, the above results are not satisfactory, but we
can say that even a simple method that follows majority rule criterion can work
well. Anyway, it is necessary to collect as many data as possible to obtain better
and satisfactory results. However, this method cannot solve the problems (2)
and (3) even when we can collect sufficient number of data. It is necessary to
introduce another or additional method.

5.2 Categorized Rule Generation and Application Strategy

To solve problems (2) and (3), in [Abe et al., 2007a], we proposed integrated data
mining that categorizes the medical data into multiple categories, to discover
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relationships between the items in each category and the health levels, and in-
tegrates the results. In addition, we discovered an order of influential power of
each category which controls the results. In the followings, we show the actual
results of categorized data mining.

If we apply a rule generated from all the data, to person ID1035, for in-
stance, the estimated health level is 4b, though the assigned health level is 4c.
When we check the medical data of ID1035, we find that the LDH (Lactate
dehydrogenase) value is rather higher than the reference value. In fact, “LDH
is an intracellular enzyme from particularly in the kidney, heart, skeletal mus-
cle, brain, liver and lungs. Increases are usually found in cellular death and/or
leakage from the cell or in some cases it can be useful in confirming myocar-
dial or pulmonary infarction (only in relation to other tests). Decreased levels
of the enzyme may be seen in cases of malnutrition, hypoglycemia, adrenal ex-
haustion or low tissue or organ activity” (from The Danish Hepatitis C web site
(http://home3.inet.tele.dk/omni/alttest.htm)). As for our standard clas-
sification, LDH is categorized into the liver, pancreas, and kidney test data group.

Accordingly, when we apply a rule generated from the liver, pancreas, and
kidney test data, the estimated health level becomes 4c. The reason is that if we
apply a rule generated from all the data, the effect of LDH cannot be considered.
Because LDH does not appear in the decision tree. However, if we apply a rule
generated from the liver, pancreas, and kidney test data, the effect of LDH can
be considered during computational medical diagnosis. As shown above, since
LDH is categorized into the liver, pancreas, and kidney test data, if we generate a
rule only from these data, any influence from tumour markersd will be cancelled
and rules including the effect of LDH can appear. In fact, we can obtain a part
of a decision tree which includes LDH as shown below:

LDH > 241

ALP type3d <= 52.4

Protein fractionation: a2 <= 9.7
Lipase <= 5
| Blood urea nitrogen <= 12 : 4b

Lipase > 5
| AST(GOT) <= 20 : 4b

|
|
| | Blood urea nitrogen > 12 : 5b
|
|
| | AST(GOT) > 20

Thus for these type of problems, a combination of multiple rules will work
well. For a person ID1035, even a single rule set that is generated from data of a
single category can work well. Of course, in general,we cannot estimate the health
level correctly by only using a rule set generated by categorized data mining, we
cannot estimate health level correctly. In fact, correct estimation ratios are fewer

3 In [Abe et al., 2007a], we discovered that tumour marker is the most influential

factor.
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when obtained in this manner than those obtained by rules generated from all
the data.

On the contrary, for NSE (neuron-specific enolase) which is categorized to a
tumour marker group, as pointed out in section [ since an effect of NSE cannot
be considered, an estimated health level becomes 3, though the assigned health
level is 4b. In fact, as shown in the part of decision tree in section[dl, NSE appears
in the decision tree generated from all the medical data.

It might be better to apply the similar strategy to the above, but since NSE
is categorized as a tumour marker member, we cannot apply a similar strategy.
Of course the generated model itself might not be sufficiently proper, but it is
necessary to introduce the other strategy to overcome such problems.

In fact, we categorized the medical data sets according to the standard clas-
sification including

1) liver, pancreas, and kidney test data,
2) metabolic function test data,

3) general urine test data,

4) blood and immunity test data, and
5) tumor markers.

For the case of ID1035, categorized rule generation and application strat-
egy worked well. However, if we take the case of NSE into consideration, it
might be necessary to introduce another classification or a more complicated
or detailed classification. Zheng proposed committee learning [Zheng and
Webb, 1998] which divide data set into several parts and perform data min-
ing for each divided data set and generates a result after comparison of each
result. The classification strategy is different from categorized data mining and
needs many data sets as shown in majority rule criterion, but if we can col-
lect sufficient number of medical data, it will be better to introduce committee
learning. In fact, as shown above, although we have only 1800 medical data, we
apply a simple type of committee learning that is majority rule criterion applied
learning to the medical data to obtain better results than an ordinal learning
strategy. Anyhow, we need to generate rules with properly categorized data sets
and apply generated rules with a proper combination. Then we will be able to
deal with complex or mixed data.

5.3 Health Level Estimation According to the Patient’s Situation

We proposed two types of data mining strategies in the above. However, physi-
cians usually do different type of “data mining” during medical examinations.
When they assign a health level to a patient, they will focus on a part of the
medical data according to the patients situation or clinical interview. Thus they
do not take all the data into account. Since some of the data are not related to
the patient’s situation, physicians usually ignore unnecessary data. For a better
estimation of health levels, it might be necessary to prepare or install such an in-
tuitional reasoning as physicians do. That is, during the health level estimation
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procedure, the system should focus on proper data clusters, and apply rules
related to the data clusters.

As shown above, we conducted categorized data mining and applied the gen-
erated rule sets to determine health levels. Currently we have not discovered
general models for generation and applying rules. However, as shown above, we
discovered several case that can estimate health levels correctly. Therefore, it
is necessary to develop an automatic categorization method that can properly
categorize medical data. Simple Principal Component Analysis could not prop-
erly categorize the medical data sets. In fact, if we know the patient’s situation,
we can focus on the data category relating to the patient’s organ which is the
source of the health problem. In the future, we will construct a data catego-
rization model and a rule set combination model by analyzing data sets and
physicians’ health level determination models.

Finally, we can also say that the combination of categorized learning and
committee learning will generate better result in data mining.

6 Conclusions

In this paper, we discussed the treatment of complex medical data which are
collected in the International Research and Educational Institute for Integrated
Medical Science (IREIIMS) project. Our main aim is to determine relationships
between health levels and medical data. By applying C4.5, we could obtained
acceptable results, but for even better results, we suggested and introduced sev-
eral strategies including a majority rule criterion application strategy, and a
categorized data mining and combined rule application strategy. We have not
discovered general models for categorization and combination. However, we point
out that a general model can be obtained by referring to physicians’ determina-
tion or diagnosis patterns. Thus we need to discover more strong relationships
between medical data and health status.

For relationship or association, Agrawal proposed an association rule that
represents relationships between items in databases |[Agrawal et al., 1993]. The
association rule is frequently used when analyzing POS data to discover tenden-
cies of users’ shopping patterns (basket analysis). However, from the analysis,
we can only discover frequently co-occurring patterns. Also, relational data min-
ing has recently been proposed [Dzroski and Lavrac, 2001]. This paradigm also
discovers relationships between items in a (relational) database by using ILP
techniques. Their approaches are important for complex data mining. However
our major aim is not to discover relationships between each category but to de-
termine an effective classification for data mining of complex data. Nevertheless,
their concept can be introduced to discover relationships.

Finally, we emphasize that our approach is based on the concept of chance
discovery [Ohsawa and McBurney, 2003]. A rare relationship that cannot be ex-
tracted by simple C4.5 application can play a significant role in a proper health
level determination. For instance, due to imbalance distribution of health levels,
it is rather difficult to obtain a proper model for health level 3. In the situation,
combination of the NSE and certain factors for level 4 might be rare in our data
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set. Accordingly, our main aim is to discover such rare and significant relation-
ships that can be used for accurate health level determination.
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Abstract. Action rules can be seen as logical terms describing knowl-
edge about possible actions associated with objects which is hidden in a
decision system. Classical strategy for discovering them from a database
requires prior extraction of classification rules which next are evaluated
pair by pair with a goal to build a strategy of action based on condition
features in order to get a desired effect on a decision feature. An action-
able strategy is represented as a term r = [(w) A (o« — 8)] = [¢p — 9],
where w, a, 3, ¢, and 1 are descriptions of objects or events. The term
r states that when the fixed condition w is satisfied and the changeable
behavior (o — ) occurs in objects represented as tuples from a database
so does the expectation (¢ — ). This paper proposes a new strategy,
called ARAS, for constructing action rules with the main module resem-
bling LERS [6]. ARAS system is more simple than DEAR and its time
complexity is also lower.

1 Introduction

Finding useful rules is an important task of a knowledge discovery process. Most
researchers focus on techniques for generating patterns from a data set such as
classification rules, association rules...etc. They assume that it is user’s respon-
sibility to analyze these patterns in order to infer solutions for specific problems
within a given domain. The classical knowledge discovery algorithms have the
potential to identify enormous number of significant patterns from data. There-
fore, people are overwhelmed by a large number of uninteresting patterns and
it is very difficult for a human being to analyze them in order to form timely
solutions. Therefore, a significant need exists for a new generation of techniques
and tools with the ability to assist users in analyzing a large number of rules for
a useful knowledge.

There are two aspects of interestingness of rules that have been studied in
data mining literature, objective and subjective measures [I], [12]. Objective
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measures are data-driven and domain-independent. Generally, they evaluate the
rules based on their quality and similarity between them. Subjective measures,
including unexpectedness, novelty and actionability, are user-driven and domain-
dependent.

For example, classification rules found from a bank’s data are very useful to
describe who is a good client (whom to offer some additional services) and who
is a bad client (whom to watch carefully to minimize the bank loses). However,
if bank managers hope to improve their understanding of customers and seek
specific actions to improve services, mere classification rules will not be convinc-
ing for them. Therefore, we can use the classification rules to build a strategy of
action based on condition features in order to get a desired effect on a decision
feature [9). Going back to the bank example, the strategy of action would consist
of modifying some condition features in order to improve their understanding of
customers and then improve services.

Action rules, introduced in [9] and investigated further in [14], [I6], [I1], are
constructed from certain pairs of classification rules. Interventions, defined in
[5], are conceptually very similar to action rules.

The process of constructing action rules from pairs of classification rules is
not only unnecessarily expensive but also gives too much freedom in constructing
their classification parts. In [T1] it was shown that action rules do not have to be
built from pairs of classification rules and that single classification rules are suf-
ficient to achieve the same goal. However, the paper only proposed a theoretical
lattice-theory type framework without giving any detailed algorithm for action
rules construction. In this paper we propose a very simple LERS-type algorithm
for constructing action rules from a single classification rule. LERS is a classical
example of a bottom-up strategy which constructs rules with a conditional part
of the length k+1 after all rules with a conditional part of the length k& have been
constructed. Relations representing rules produced by LERS are marked. System
ARAS assumes that LERS is used to extract classification rules. This way ARAS
instead of verifying the validity of certain relations only has to check if these re-
lations are marked by LERS. The same, by using LERS as the pre-processing
module for ARAS, the overall complexity of the algorithm is decreased.

2 Action Rules

In paper [9], the notion of an action rule was introduced. The main idea was
to generate, from a database, special type of rules which basically form a hint
to users showing a way to re-classify objects with respect to values of some
distinguished attribute (called a decision attribute).

We start with a definition of an information system given in [g].

By an information system we mean a pair S = (U, A), where:

— U is a nonempty, finite set of objects (object identifiers),
— A is a nonempty, finite set of attributes (partial functions) i.e. a : U — V,
for a € A, where V, is called the domain of a.
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We often write (a,v) instead of v, assuming that v € V. Information systems
can be used to model decision tables. In any decision table together with the
set of attributes a partition of that set into conditions and decisions is given.
Additionally, we assume that the set of conditions is partitioned into stable and
flexible [9]. Attribute a € A is called stable for the set U, if its values assigned
to objects from U can not change in time. Otherwise, it is called flexible. ”Date
of Birth” is an example of a stable attribute. ”Interest rate” on any customer
account is an example of a flexible attribute. For simplicity reason, we will con-
sider decision tables with only one decision. We adopt the following definition of
a decision table:

By a decision table we mean an information system S = (U, A1 U Ay U {d}),
where d ¢ A; U Ay is a distinguished attribute called decision. Additionally,
it is assumed that d is a total function. The elements of A; are called stable
attributes, whereas the elements of As U {d} are called flexible. Our goal is
to suggest changes in values of attributes in Ay for some objects from U so
the values of the attribute d for these objects may change as well. A formal
expression describing such a property is called an action rule [9], [14].

Table 1. Two classification rules extracted from S

Stable Flexible Stable Flexible Stable Flexible Decision

A B C E G H D
ail b1 C1 €1 dl
al bo g2 ho d2

To construct an action rule [I4], let us assume that two classification rules,
each one referring to a different decision class, are considered. We assume here
that these two rules have to be equal on their stable attributes, if they are both
defined on them. We use Table 1 to clarify the process of action rule construction.
Here, ”Stable” means stable attribute and ”Flexible” means flexible one. In a
standard representation, these two classification rules have a form:

r1 = [(a1 Aby Aep Aer) — di], ro = [(a1 Aba A ga Ahe) — dal.

Assume now that object x supports rule r; which means that it is classified
as di. In order to reclassify x to a class da, we need to change not only the value
of B from by to by but also to assume that G(z) = g2 and that the value H for
object x has to be changed to hy. This is the meaning of the (r1,rs)-action rule
defined by the expression below:

T = [[al /\92 A (B,bl — bg) A (H,—> hg)} — (D,dl — dz)]

The term [a; A go] is called the header of the action rule. Assume now that
by Sup(t) we mean the number of tuples having property ¢. By the support of
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(r1,72)-action rule (given above) we mean: Suplai Ag2/Abi Ady]. By the confidence
Conf(r) of (r1,r2)-action rule r (given above) we mean (see [14], [15]):

[Suplai A ga Aby Adyi]/Suplar A ga Ab1]] - [Suplar Aba Acy Ads]/Suplas Abs Acy]].

Assume now that S = (U, A; UAsU{d}) is decision system, where 4; = {a, b}
are stable attributes, Ay = {c, e, f} are flexible attributes, and d is the decision.
For a generality reason, we take an incomplete decision system. It is represented
as Table[2l Our goal is to re-classify objects in S from (d, 2) to (d, 1). Additionally,
we assume that Dom(a) = {2,3,10}, Dom(b) = {2,3,4,5}, and the null value
is represented as —1. We will follow optimistic approach in the process of action
rules discovery, which means that the Null value is interpreted as the disjunction
of all possible attribute values in the corresponding domain.

Table 2. Incomplete Decision System S

Stable Stable Flexible Flexible Flexible Decision

a b c e f d
2 -1 -1 7 8 1
2 5 4 6 8 1
-1 -1 4 9 4 2
10 4 5 8 7 2
2 2 5 -1 9 3
2 2 4 7 6 3
-1 2 4 7 -1 2
2 —1 -1 6 8 3
3 2 4 6 8 2
3 3 5 7 4 2
3 3 5 6 2 3
2 5 4 9 4 1

Now, we present the preprocessing step for action rules discovery. We start
with our incomplete decision system S as the root of the Reduction Tree (see
Fig. 1). The next step is to split S into sub-tables taking an attribute with
the minimal number of distinct values as the splitting one. In our example, we
chose attribute a. Because the 3rd and the 7th tuple in S contain null values in
column a, we move them both to all three newly created sub-tables. This process
is recursively continued for all stable attributes. Sub-tables corresponding to
outgoing edges from the root node which are labelled by a = 10, a = 3 are
removed because they do not contain decision value 1. Any remaining node in
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Fig. 1. Table Reduction Process

the resulting tree can be used for discovering action rules. Clearly, if node n is
used to construct action rules, then its children are not used for that purpose.

3 ARAS: Algorithm for Discovering Action Rules

This section covers only complete information systems. For an incomplete in-
formation system, we can use FRID [3] to discover classification rules. Their
syntax is the same as the syntax of rules discovered from a complete system.
Let us assume that S = (U, 41 U A3 U {d}) is a complete decision system,
where d € Ay U As is a distinguished attribute called the decision. The elements
of Ay are stable conditions, whereas the elements of Ay U {d} are flexible. As-
sume that d; € Vy and = € U. We say that x is a dj-object if d(z) = dy. We



ARAS: Action Rules Discovery Based on Agglomerative Strategy 201

also assume that {a1,as,...,ap} C A1, {apt1, apt2, ... an}=A1-{a1,a2,...,a,},
{b1,b2,...,bs} € Az, af; ;) denotes a value of attribute a;, by; ;) denotes a value
of attribute b;, for any ¢, 7 and that

[2,5]

r= Ha[Ll] N aj2,1) VANREIRWAN A[p,1] AN b[l,l] AN b[271] VAN A\ b[%lﬂ — dl]

is a classification rule extracted from S supporting some di-objects in 5. Class
dy is a preferable class and our goal is to reclassify ds-objects into d; class, where
do € Vy.

By an action rule schema ryg, . 4,) associated with r and the above reclassi-
fication task (d,dy — di) we mean the following expression:

Tlay—sdi] = [[ap ) Aapay A Aapag A (b, — b )
A(bz, — ba1]) A oo A (bg, — big17)] — (d, d2 — d1)]

In a similar way, by an action rule schema r_4,) associated with 7 and the
reclassification task (d, — dy)we mean the following expression:

r—da] = [lapa A A Aapa A (b, — bpy)
/\(b27 — b[271]) N N (bq7 —_— b[q71])] SN (d7 . dl)]

The term [ap 1] A ajza) A -+ - A app,q)], built from values of stable attributes, is
called the header of rg, .4,) and its values can not be changed. It is denoted
by h[T[dz—»dl]]~

The support set of the action rule schema 74,4, is defined as Sup(r(4,—a,))
={z cU: (ai(z) = ap 1) A(az(z) = ap ) A -Alap(x) = ap ) A(d(z) = d2)}.

Now, we outline ARAS strategy for generating the set AR of action rules
from the action rule schema ryg, .q,]-

Assume that:

= Vapur = {11, 0fpt1,2)5 - -+ Qpr1,01)) )
= Vapio = 10p12,1) Op+2,2)5 -+ 5 Ap42,0(2) }
~= Vapen = {0ptn1) Qpin,2)s - Qptn,a(m)]}

= Vi, = b1, b2 5 b1, s (1))
= Vo, = {bi2,11,b12,2), - - - 5 bj2, s(n+2)]

= Vo, = {big.115 010,205+ g, s (o}
To simplify the presentation of the algorithm we assume that:

— ¢ = apyk and cp ) = ppypy), for 1 <i < J(k), 1 <k <n,
= Cntm = b and pnqm, i) = bpm,i, for 1 <i < J(n+m), 1 <m <gq.

For simplicity reason, we use U, dz) to denote Sup(r(4,—q,1). We assume that
the term cp;, ;1 A Clig jo] A=+ A i, 5,1 is denoted by [cri, jalkeq1,2,...,r}, Where all
i1,12,...,1, are distinct integers and j, < J(ip), 1 < p < r. Following LERS
notation [6], we also assume that ¢* denotes the set of all objects in S having
property t.
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Algorithm AR(r,ds)
=1
while i <n + ¢ do
begin
j=2; m:=1
while j < J(i) do
begin
if [h[’l“[dfz*)dlﬂ N C(i,j)]* - U[r,dz] Ac¢; € Ay then
begin
mark[c(; ;)];
output Action Rule
[[P[ra,—an] A (i, ey — )l — [d, d2 — da]]
end
if [h[’l“[dfz*)dlﬂ N C(i,j)]* - U[r,dz] Ac¢; € Ay then
begin
mark[c(; ;)];
output Action Rule
[[Alr(g—an] A (ci, )] — [d; d2 — da]]
end
J=j+1
end
end
Iy = {ir};
(where i) - index randomly chosen from {2,3,...,q+n}).
for all ji, < J(ix) do [cq, j)]iver, = cli, jr);
for all i,j such that both sets [c(;, j.)lier., ¢, ) are not marked and
1 € Iy
do
begin
if Hh[T[dz—wll]] A [C(ik,jk)]ikelk A C(i,j)“* - U[r,dz] Ac¢; € Ay then
begin
mark ([, j)liven. A capli
output Action Rule
[(Alr(a,—dn] A e o liven A (ei ey — @)l — [d d2 — di]]
end
if Hh[?"[d2_,dl]] A [C(ik7jk)]ikelk A C(i,j)”* - U[r,drz] Ac¢; € Ay then
begin
mark [[c(i, j)liven, N cal;
output Action Rule
[(Alr(as—an] A legin,gmliven. A (i e g)] — [d, d2 — di]]
end
else
begin
I := I U{i}; (e g liven = [Clingnliven. A i)
end
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The complexity of ARAS is lower than the complexity of DEAR system dis-
covering action rules. The justification here is quite simple. DEAR system [14]
groups classification rules into clusters of non-conflicting rules and then takes all
possible pairs of classification rules within each cluster and tries to build action
rules from them. ARAS algorithm is treating each classification rule describing
the target decision value as a seed and grabs other classification rules describing
non-target decision values to form a cluster and then it builds decision rules au-
tomatically from them. Rules grabbed into a seed are only compared with that
seed. So, the number of pairs of rules which have to be checked, in comparison
to DEAR is greatly reduced. Another advantage of the current strategy is that
the module generating action rules in ARAS only checks if a mark is assigned
by LERS to the relation [h[rjg,—q,]] A ¢(,j)]* € Ulra,) instead of checking its
validity.

The confidence of generated action rules depends on the number of remaining
objects supporting them. Also, if Conf(r) # 1, then some objects in .S satisfying
the description [a1,1 Aag1 A+ Aap1 Abii Aba1 A..... Aby.1] are classified as ds.
According to the rule 7(4,_.4,) they should be classified as d; which means that
the confidence of 74, _.4,) will get also decreased.

If Sup(rig,—q,)) = 0, then 7g,_.4,) can not be used for reclassification of
objects. Similarly, r_,4,) can not be used for reclassification, if Sup(r(g,—a,)) = 0,
for each dy where dy # dy. From the point of view of actionability, such rules
are not interesting.

Let Sup(ri—a4,)) = U{Sup(ria,—a,1) : (d2 € Va) A (d2 # d1)} and Sup(R|_q,))
= U{Sup(ri—q,)) : 7 € R(d1)}, where R(d;) is the set of all classification rules
extracted from S which are defining d;. So, Sup(Rs) = [U{Sup(Rj—4,)) : d1 €
Va} contains all objects in S which potentially can be reclassified.

Assume now that U(dy) = {x € U : d(z) # di1}. Objects in the set B(d;) =
[U(d1) — Sup(R(—q,))] can not be reclassified to the class d; and they are called
d;-resistant [I1].

Let B(—dy) = ({B(d;) : (d; € V4) A (d; # d1)}. Clearly B(—dy) represents
the set of di-objects which can not be reclassified. They are called d;-stable.
Similarly, the set By = U{B(—d;) : d; € Vy} represents objects in U which can
not be reclassified to any decision class. All these objects are called d-stable. In
order to show how to find them, the notion of a confidence of an action rule is
needed.

Let 7(gy—d,) rfd2_>d3] are two action rules extracted from S. We say that
these rules are p-equivalent (~~), if the condition given below holds for every
b, € A1 U As:

if r/b;, ' /b; are both defined, then r/b; = 7' /b;.

Now, we explain how to calculate the confidence of 7, _.q4,). Let us take da-
object x € Sup(rg,—q,])- We say that = positively supports r(g,_.q,] if there
is no classification rule 7’ extracted from S and describing ds € Vy, d3 # di,
which is p-equivalent to r, such that = € Sup(rfdQ_ds]). The corresponding

subset of Sup(riq,—a,)) is denoted by Sup™(rig,—4,1). Otherwise, we say that
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x negatively supports r(4,_.q,). The corresponding subset of Sup(r(g,—q,]) is
denoted by Sup™(r(dg,—d,])-
By the confidence of r(4, 4, in S we mean [I1]:

Conf(ria,—da,]) = [card[Sup™ (T1dy—dy))]/ card[Sup(rig,—ay))]] - conf(r).

Now, if we assume that Sup™(r_q,)) = U{Sup™ (ra,—ay)) : (d2 € Va) A(d2 #
di1)}, then by the confidence of ri_4,) in S we mean:

Conf(r—a,) = [card[Sup"‘(T[Hdll)]/card[Sup(r[Hdl])]] ~conf(r).

It can be easily shown that the definition of support and confidence of action
rules given in Section 3 is equivalent to the definition of support and confidence
given in Section 2.

4 An Example

Let us assume that the decision system S = (U,{A; U Az U {d}}), where U =
{1, 22, 23,24, x5, Tg, x7, T3}, is represented by Table 3 [I1]. The set A1 ={a,b,c}
contains stable attributes and A = {e, f, g} contains flexible attributes. System
LERS [6] is used to extract classification rules.

Table 3. Decision System

U a b c e f g d

T al by c1 e1 fo g1 di
T2 az br c2 e2 f2 g2 ds
T3 as b1 Cc1 €2 f2 gs d2
T4 al by Ca e2 fo g1 da
xTs al ba Cc1 €3 f2 g1 d2
T6 az br c1 e2 f3 g1 d2
xTr7 az bs C2 €2 f 2 g2 da
T8 az br c1 e3 f2 g3 d2

We are interested in reclassifying dso-objects either to class di or ds. Four
certain classification rules describing d;, ds can be discovered by LERS in the
decision system S. They are given below:

le[bl/\cl/\fg/\gﬂ—wil, 7“2:[612/\()1/\62/\‘][‘2]—>dg7
r3=e; —dy, 7‘4:[b1 /\gg] — ds.

It can be shown that Ry .4, = {rl,r3} and Ry .4, = {r2,r4}. Action
rule schemas associated with 71, 2, r3, r4 and the reclassification task either
(d,ds — dy) or (d,ds — ds3) are:
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We can also show that Uy g, = Sup(rlig,—a,)) = {23,26,28}, Upo,ay) =
Sup(r2ay,—ay)) = {6, 78}, Ups,ay) = Sup(r3ja,—ay)) = {23, %4, 75,26, 27,78},
Upra,d) = Sup(rdia,—ds)) = {73, T4, 76, T8}

Following AR(rl,dz) algorithm we get: [by A c1 A ai]* = {21} € Upi,ay),
[biAciAaz]* = {6, 28} C Upp,d,)5 [brACIAf3]* = {x6} C Uppi,ay]s [brAC1Age]” =
{zo, 27} € Upa,ay)y (b1 Act A ga]* = {x3, 28} C Upi,ay)-

It will generate two action rules:

[bl Aer A (f7f3 - f2) A (97—>gl)] - (d’d2 - dl)a
bi Aeit A(f,— fa) A(g 93 — g1)] = (d,d2 — dy).

In a similar way we construct action rules from the remaining three action
rule schemas.

The action rules discovery process, presented above, is called ARAS and it con-
sists of two main modules. For its further clarification, we use another example
which has no connection with Table 3. The first module extracts all classification
rules from S following LERS strategy. Assuming that d is the decision attribute
and user is interested in re-classifying objects from its value d; to ds, we treat
the rules defining d; as seeds and build clusters around them.

For instance, if A1 = {a,b, g} are stable attributes, Ay = {c,e, h} are flexible
in S = (U, AL UAyU{d}), and r = [[a1 Aby Ac1 Aei] — di] is a classification
rule in S, where Va = {al,ag,ag}, ‘/b = {bl,bg,bg}, ch = {01,62,63}, Ve =
{e1,ea,e3}, Vy = {91,92,93}, Ve = {h1,ho,h3}, then we remove from S all
tuples containing values aso, as, bs, b3, c1,e1 and we use again LERS to extract
rules from this subsystem. Each rule defining ds is used jointly with r to construct
an action rule. The validation step of each of the set-inclusion relations, in the
second module of ARAS, is replaced by checking if the corresponding term was
marked by LERS in the first module of ARAS.

5 Mining Database HEPAR

As the application domain for our research we have chosen the HEPAR system
built in collaboration between the Institute of Biocybernetics and Biomedical
Engineering of the Polish Academy of Sciences and physicians at the Medical
Center of Postgraduate Education in Warsaw, Poland [2], [7]. HEPAR was de-
signed for gathering and processing clinical data on patients with liver disorders.
Its integral part is a database created in 1990 and thoroughly maintained since
then at the Clinical Department of Gastroenterology and Metabolizm in Warsaw,
Poland. It contains information about 758 patients described by 106 attributes
(including 31 laboratory tests with values discretized to: below normal, normal,
above normal). It has 14 stable attributes. Two laboratory tests are invasive:
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HBsAg [in tissue] and HBcAg [in tissue]. The decision attribute has 7 values: I
(acute hepatitis), ITa (subacute hepatitis [types B and C]), IIb (subacute hep-
atitis [alcohol-abuse]), ITa (chronic hepatitis [curable]), IIIb (chronic hepatitis
[non-curable]), IV (cirrhosis-hepatitis), V (liver-cancer).

The diagnosis of liver disease depends on a combination of patient’s history,
physical examinations, laboratory tests, radiological tests, and frequently a liver
biopsy. Blood tests play an important role in the diagnosis of liver diseases.
However, their results should be analyzed along with the patient’s history and
physical examination. The most common radiological examinations used in the
assessment of liver diseases are ultrasound and sonography. Ultrasound is a good
test for the detection of liver masses, assessment of bile ducts, and detection of
gallstones presence. However, it does not detect the degree of inflammation or
fibrosis of the liver. Ultrasound is a noninvasive procedure and there are no
risks associated with it. Liver biopsy enables the doctor to examine how much
inflammation and how much scarring has occurred. Liver biopsy is an example
of invasive procedure that carries certain risks to the patient. Therefore, despite
of the importance of its results to the diagnosis, clinicians try to avoid biopsy as
often as possible. However, liver biopsy is often the only way to establish correct
diagnosis in patients with chronic liver disorders.

A medical treatment is naturally associated with re-classification of patients
from one decision class into another one. In our research we are mainly interested
in the re-classification of patients from the class IIb into class I and from the
class I1Ta into class I but without referring to any invasive tests results in action
rules.

Database HEPAR has many missing values so we decided to remove all its
attributes with more than 90% of null values assuming that these attributes are
not related to invasive tests. Also, subjective attributes (like history of alcohol
abuse) and cammong performed basic medical tests have been removed. Finally,
we used classical null value imputation techniques to make the resulting database
complete.

The next step of our strategy is to apply RSES software [13] to find d-reducts.
The set R = {m, n, q, u, y, aa, ah, ai, am, an, aw, bb, bg, bm, by, ¢j, cm} is
one of them and it does not contain invasive tests. The description of its values
is given below:

— m - Bleeding

— n - Subjaundice symptoms

— q - Eructation

— u - Obstruction

— y - Weight loss

— aa - Smoking

— ah - History of viral hepatitis (stable)
— al - Surgeries in the past (stable)

— am - History of hospitalization (stable)
— an - Jaundice in pregnancy

— aw - Erythematous dermatitis
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— bb - Cysts

— bg - Sharp liver edge (stable)
— bm - Blood cell plaque

— by - Alkaline phosphatase

— ¢j - Prothrombin index

— cm - Total cholesterol

— dd Decision attribute

Two action rules discovered by ARAS from the database reduced to d-reduct
R are given below.

(ah=1)A(ai=2)A(am =2)A(bg=1)] A[(em =1) A (aw = 1)A
u,— 1) A (bb=1) A (aa =1) A (¢,— 1) A (m,— 1) A (n=1) A (b, — down)A
y = 1) A (by, norm — up)] = (dd, I11a — 1)

[
(
(
[(ah =1)A(ai =2) A (am =2) A (bg = D) A[(em = 1) A (aw = 1)A

(u,— 1) A (Bb=1) A (aa =1) A(q¢,— 1) A (m,— 1) A (n=1) A (b, — down)A
(y = 1) A (by, norm — down)] = (dd, IIIa — 1)

Both action rules are applicable to patients with no history of viral hepatitis
but with a history of surgery and hospitalization. Sharp liver edge has to be
normal, no subjaundice symptoms, total cholesterol, erythematous dermatitis,
and weight have to be normal, no cysts, and patient can not smoke.

For this class of patients, the action rule says that:
By getting rid of obstruction, eructation, bleeding, by decreasing the blood cell
plaque and by changing the level of alkaline phosphatase we should be able to
reclassify the patient from class Illa to class I. Medical doctor should decide if
the alkaline phosphatase level needs to be decreased or increased. Attribute values
of total cholesterol, weight, and smoking have to remain unchanged.

6 Conclusion

System ARAS differs from the tree-based strategies for action rules discovery
(for instance from DEAR [I4]) because clusters generated by its second module
are formed around target classification rules. An action rule can be constructed
in ARAS from two classification rules only if both of them belong to the same
cluster and one of them is a target classification rule. So, the complexity of the
second module of ARAS is 0(k - n), where n is the number of classification rules
extracted by LERS and k is the number of clusters. The time complexity of the
second module of DEAR is equal to 0(n - n), where n is the same as in ARAS.
The first module of ARAS is the same as the first module of DEAR, so their
complexities are the same.
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Abstract. In some applications it is necessary to sort a set of elements
according to an order relationship which is not known a priori. In these
cases, a training set of ordered elements is often available, from which
the order relationship can be automatically learned. In this work, it is as-
sumed that the correct succession of elements in a training sequence (or
chain) is given, so that it is possible to induce the definition of two pred-
icates, first/1 and succ/2, which are then used to establish an ordering
relationship. A peculiarity of this work is the relational representation
of training data which allows various relationships between ordered el-
ements to be expressed in addition to the ordering relationship. There-
fore, an ILP learning algorithm is applied to induce the definitions of
the two predicates. Two methods are reported for the identification of
either single chains or multiple chains on new objects. They have been
applied to the problem of learning the reading order of layout compo-
nents extracted from document images. Experimental results show the
effectiveness of the proposed solution.

1 Introduction

Many applications require sorting a set of elements according to either a partial
or a total ordering relationship. The problem can be efficiently solved by ap-
plying sorting algorithms when the ordering relationship is known a priori, but
there are cases in which no definition of ordering relationship is available due
to several difficulties in formalizing one. A prominent example is represented by
preference functions, which indicate whether one element should be ranked be-
fore another. A preference function is typically subjective and difficult to elicit,
although it can be relatively easy to collect instances of ordered elements from
which the preference function can be automatically induced. Another example is
the reading order of layout components in a page. The rule of thumb “Western-
style documents are usually read top-bottom and left-right” is an ambiguous
statement, which is not appropriate for many newspapers and magazines. Also
in this case, it is easy to collect examples of correct reading sequences from which
the reading order rules specific to a class of documents can be learned.

The problem of learning how to construct an ordering, given a collection of
instances of ordered elements, has been faced by Cohen et al [6] who propose
a two-stage approach. In the first stage (learning), a binary preference func-
tion PREF (u,v) is learned, which indicates how certain it is that u should be
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ranked before v. In the second stage (sorting), new instances are ordered so as
to maximize the agreement with the learned preference function. The function
PREF(u,v) is a linear combination of primitive preference functions, each of
which is associated with a ranking expert, and the learning process consists in
defining a weight for each primitive preference function on the basis of training
sets of ordered pairs (u, v). Kamishima and Akaho [13] propose a naive Bayes ap-
proach to estimate PREF (u,v) and compare two alternative optimality criteria
(sum and product of values taken by PREF) to be maximized in the sorting stage.

In both works, an ordered pair (u,v) in the training set is interpreted as v is
ranked above u, and the learning task aims to induce a definition of an ordering
which is consistent with input ordered pairs. However, in many applications the
ordered pair (u,v) in the training set can be interpreted as “v is the successor
of u”, in which case the learning task can be slightly different, namely learning
the definition of the successor relationship between elements. Once the successor
relationship is learned, an ordering relationship can be established.

In this paper, we follow this approach to learning how to order elements.
Given both positive and negative instances of two predicates, namely first/1 and
suce/2, we first induce the definitions of “first element” and “successor element”
in a sequence (or chain) of elements, and then we apply these definitions to a new
set of elements, in order to reconstruct a possible partial or total ordering of these
elements. The main advantage of this approach is that it can also be applied to
those tasks characterized by the following properties: a) not all elements have to
be ordered - only those involved in a direct succession relationship; b) different
sequences can be defined on subsets of elements. Two examples of these tasks
are the detection of the reading order between document layout components [2]
and the design of workflows from process logs [20].

The task considered in this paper is predictive and differs from another de-
scriptive task reported in the works [I9], where the problem is discovering frag-
ments of order, and [10], where the problem is that of describing a set of sequences
by a single (or a set of) partial orders occurring in the sequences.

Another important difference with respect to related works is the represen-
tation of training data. In all previous works, the ordering relationship is the
only one considered between elements, which are represented as rows of a single
table, whose columns correspond to attributes of the elements. However, in sev-
eral applications this representation is quite restrictive. For instance, in reading
order detection some spatial relationships can be defined between layout compo-
nents and the reading order can actually depend on these spatial relationships
(e.g., the next layout component is ‘below’ the one currently read). To consider
these additional relationships we resort to a relational representation with sev-
eral tables which describe possibly different types of elements and the various
relationships between them. Therefore, a peculiarity of this work is that train-
ing data are complex objects and that ordered elements are basic components of
these complex objects.

The relational representation of complex objects requires the application of
inductive logic programming (ILP) [23[14124] methods in order to induce a
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definition of the predicates first/1 and succ/2. In this work, we resort to the
application of the ILP system ATRE [I7] to learn a logical theory which defines
the two predicates and is then used to reconstruct a partial or total ordering in
new structured complex objects.

The paper is organized as follows. The problem of learning to order objects
is formally defined in Section 2l The machine learning system ATRE, applied
to the problem of learning the logical theory, is introduced in Section Bl while
the application of the learned theory in order to reconstruct a partial order
relationship, is reported in Section @l Finally, the application to the document
image processing domain is illustrated in Section [l where experimental results
are also reported and commented.

2 Problem Definition

In order to formalize the learning problem, some useful definition are necessary.

Definition 1 (Partial Order [1I]). Let A be a set of basic components of a
complex object, a partial order P over A is a relation P € A x A such that P is

1. reflexive Vs € A= (s,s) € P
2. antisymmetric Vsq,so € A: (s1,52) € P A (s2,81) € P < 51 = 59
3. transitive Vs1, S, 83 € A (81,82) ePA (82,83) eP= (81783) epP

When P satisfies the antisymmetric, the transitive and the irreflexive (Vs € A =
(s,s) ¢ P) properties, it is called a weak partial order over A.

Definition 2 (Total Order). Let A be a set of basic components of a complex
object, a partial order T" over the set A is a total order i Vsy,s2 € A: (s1,52) €
TV (s2,81) €T

Definition 3 (Complete chain, Chain reduction). Let A be a set of basic com-
ponents of a complex object, let D be a weak partial order over A, let B = {a €
Al(Fb € A s.t. (a,b) € DV (b,a) € D)} be the subset of elements in A related to
any element in A itself. If D U {(a,a)|a € B} is a total order over B then D is
a complete chain over A.

Furthermore, C = {(a,b) € D|-3¢c € A s.t. (a,c) € D A (¢,b) € D} is the
reduction of the chain D over A.

Example 1. Let A = {a,b,¢,d,e}. D = {(a,b),(a,c),(a,d),(b,c), (b,d),(c,d)} is
a complete chain over A, then C' = {(a,b), (b,c), (¢c,d)} is its reduction.

Indeed, for our purposes it is equivalent to deal with complete chains or their
reduction. Henceforth, for the sake of simplicity, the term chain will denote the
reduction of a complete chain. By resorting to definitions above, it is possible to
formalize the ordering induction problem as follows:
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Given
— A description DesT'O; in the language L of the set of n training complex
objects TrainingObjs = {TP; € II|i = 1..n} (where IT is the set of
complex objects).
— A description DesT'C; in the language L of the set T'C; of chains (over
TP; € TrainingObjs) for each TP; € TrainingObjs.
Find: An intensional definition 7" in the language L of a chain over a generic
compex object O € II such that T is complete and consistent with respect
to all training chains descriptions DesT'C;, i = 1..n.

In this problem definition, we refer to the intensional definition 7" as a first order
logic theory, that is, a set of first order definite clauses [16]. The fact that T is
complete and consistent with respect to all training chains descriptions can be
formally described as follows:

Definition 4 (Completeness and Consistency). Let

— T be a logic theory describing chains instances expressed in the language L.
— ET be the set of positive examples for the chains instances.
(E* = Ui:l..n(UTC’ETC’i TC)).
— E~ be the set of negative examples for the chains instances.
(B~ =Uj1. (TP x TP)/ET).
— DesE™ be the description of ET in L.
— DesE~ be the description of £~ in L.

then T is complete and consistent with respect to all training chains descriptions
i TE DesEt A T W DesE™

This formalization of the problem permits to represent and identify distinct
orderings on the same complex object and allows to avoid to include in the
ordering basic components that should not be included.

3 Learning the Logical Theory with ATRE

ATRE is an ILP system that can learn recursive theories from examples. The
learning problem solved by ATRE can be formulated as follows:

Given

— a set of concepts K, K, ..., K, to be learned

a set of observations O described in a language Lo

— a background theory BK described in a language Lk,

a language of hypotheses £y which defines the space of hypotheses Sg
a user’s preference criterion PC
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Find

A logical theory T' € Sg, which defines the concepts K, K, ..., K,, such
that 7" is complete and consistent with respect to O and satisfies the preference
criterion PC.

The completeness property holds when the theory T explains all observations
in O of the r concepts Ky, Ks, ..., K,, while the consistency property holds
when the theory T explains no counter-example in O of any concept C;. The
satisfaction of these properties guarantees the correctness of the induced theory,
with respect to the given observations O. The selection of the “best” theory is
made on the basis of an inductive bias embedded in some heuristic function or
expressed by the user of the learning system (preference criterion).

In the context of the ordering induction problem, we identified two concepts
to be learned, namely first/1 and succ/2. The former refers to the the first basic
component of a chain, while the latter refers to the relation successor between
two basic components in a chain. By combining the two concepts it is possible
to identify a partial ordering of basic components of a complex object.

Both the language of hypotheses Lg and the language of background knowl-
edge Lpk arelimited to linked, range-restricted definite clauses [[7], whose literals
can be of the two distinct forms:

f(t1, ..., ty) = Value  (simple literal)
f(t1, ..., ty) € Range (set literal),

where f and g are function symbols called descriptors, ¢;’s are terms (constants
or variables) and Range is a closed interval of possible values taken by f.

Observations are represented as ground multiple-head clauses, called objects,
which have a conjunction of simple literals in the head. Each object is associated
with a unique object identifier (OID). The notion of multiple-head clauses in
ATRE adapts the notion of interpretation, which is common to many relational
data mining systems for efficiency reasons [8]. ATRE distinguishes objects from
examples, which are described as pairs (L, OID), where L is a literal in the head
of the object identified by OID. Examples can be either positive or negative.

At the high-level ATRE implements a sequential covering algorithm [22]. A
recursive theory 7' is built iteratively, starting from an empty theory T, and
then adding a new clause at each iteration. In this way we obtain a sequence of
theories:

To=0,T1,....T;,Tis1,.... To =T

such that T;41 = T; U {C} for some clause C and LHM(T;) C LHM (Ti+1),
where LHM (T) denotes the least Herbrand model of a theory T [16]. Let
pos(LHM (T)) and neg(LHM (T)) be the number of positive and negative ex-
amples in LHM (T), respectively. If we guarantee that:

1. pos(LHM (T;)) < pos(LHM (T;+1)), for each i € {0,1,...,n— 1} and
2. neg(LHM (T3)) = 0, for each i € {0,1,...,n},
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then, after a finite number of iterations, a theory T', which is complete and con-
sistent, is built. The first condition is guaranteed by selecting a positive example
(or seed) et ¢ LHM/(T;) of a concept K to be learned, and then by looking for
a clause C if any, such that et € LHM(T;U{C?}) (i.e., pos(LHM(T; U{C})) >
pos(LHM (T3;))). The second condition is more difficult to guarantee since the
addition of a locally consistent clause C' to a theory T; does not preserve consis-
tency of T; U {C'} (non-monotonicity of the normal ILP setting). The approach
followed in ATRE consists of simple syntactic changes in T;, which eventually
creates new layers [17].

The automated discovery of dependencies between concepts K1, Ko, ..., K,
is based on a variant of the sequential covering learning strategy, which is tradi-
tionally adopted by single concept learning systems that generate clauses with
the same literal in the head at each iteration. In multiple concept learning,
clauses generated at each iteration may refer to different concepts. In addition,
the body of the clause generated at the i-th iteration may involve any concept
K, Ks, ..., K, for which at least a clause has been added to the theory partially
learned in previous iterations. In this way, dependencies between concepts can
be generated.

At each iteration of the main loop of the sequential covering algorithm, clauses
for distinct concepts are generated, and then one of them is picked. Since the gen-
eration of a clause depends on a seed, several seeds have to be chosen (if any, at
least one seed per concept to be learned). Therefore, the search space is a forest
of as many search-trees as the number of chosen seeds. Each search-tree is rooted
with a unit clause and ordered by the generalization model adopted in ATRE
(generalized implication [I7]). The forest can be processed in parallel by as many
concurrent tasks as the number of search-trees. Each task traverses the special-
ization hierarchy top-down through a sequential covering strategy, but synchro-
nizes traversal with the other tasks at each level. Search proceeds toward deeper
and deeper levels of the specialization hierarchies until at least a user-defined
number of consistent clauses is found. Task synchronization is performed after
that all “relevant” clauses at the same depth have been examined. A supervisor
task decides whether the search should carry on or not on the basis of the results
returned by the concurrent tasks. When the search is stopped, the supervisor
selects the “best” consistent clause according to the user’s preference criterion.
This separate-and-parallel-conquer search strategy provides us with a solution
to the problem of interleaving the induction of distinct concept definitions.

4 Application of the Learned Logical Theory

Once the logical theory has been learned, they can be applied to new com-
plex objects in order to generate a set of ground atoms such as: {first(0) =
true, succ(0,1) = true, ..., succ(4,3) = true,...} which can be used to recon-
struct chains of (possibly logically labelled) basic components. In our approach,
we propose two different solutions: 1) Identification of multiple chains of basic
components. 2) Identification of a single chain of basic components.
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By applying the logical theory learned by ATRE, it is possible to identify:

— A directed graph G = (V, E where V' is the set of nodes representing all the
basic components of a complex object and E = {(by,b2) € V?|succ(by, by) =

true}
— A list of initial nodes I = {b € V| first(b) = true}
— A list of final nodes F' = {bg eV — I‘Vbl eV (bl,bz) §é E}

Both approaches make use of G, I and T in order to identify chains.

Multiple Chains Identification. This approach aims at identifying a (possi-
bly empty) set of chains over the set of basic components of a complex object.
It is based on two steps, the first of which aims at identifying the heads (first
elements) of the possible chains, that is the set

Heads :IU{bl € V‘ db, € V (bhbg) EFE ANVbyg eV (b07b1) ¢ E}

This set contains both nodes for which first is true and nodes which occur as
a first argument in a true succ atom and do not occur as a second argument in
any true succ atom.

Once the set Heads has been identified, it is necessary to reconstruct the
distinct chains. Intuitively, each chain is the list of nodes forming a path in G
which begins with a node in Heads and ends with a node without outgoing
edges. Formally, an extracted chain C' C F is defined as follows:

C = {(b1,b2), (b2,03), ..., (b, br+1)}
such that

1. by € Heads,

2. bk+1 eF,

3. Vi=1.k: (bi,bi+1) eEF

4. Vi=1.kYj =i+ 1.k+1b; £ ;.

The last condition imposes that the same node cannot appear more than once

in the same chain In order to avoid cyclic paths.

Single Chain Identification. The result of the second approach is a single
chain. Following the proposal reported in [6], we aim at iteratively evaluating
the most promising node to be appended to the resulting chain. More formally,
let PREFg :V xV — {0,1} be a preference function defined as follows:

1if by = by or a path connecting b; and bs exists in G

PREFg(bi,b2) = {0 otherwise

Let p: V — N be the function defined as follows:

w(L, G, 1,b) = countConnections(L, G, I,b) + outGoing(V/L,b)
—inComing(V/L,b)

1 @G is not a direct acyclic graph (dag) since it could also contain cycles.
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where

— G = (V,E) is the ordered graph

— L is a list of distinct nodes in G

— b e V/L is a candidate node

— countConnections(L,G,1,b) = |{d € LUI|PREF¢(d,b) = 1}| counts the
number of nodes in L U I from which b is reachable.

— outGoing(V/L,b) = |{d € V/L|IPREFg(b,d) = 1}| counts the number of
nodes in V/L reachable from b.

— inComing(V/L,b) = |{d € V/L|IPREF¢(d,b) = 1}| counts the number of
nodes in V/L from which b is reachable.

Algorithm [ fully specifies the method for the single chain identification. The
rationale is that at each step a node is added to the final chain. Such a node
is that for which p is the highest. Higher values of p are given to nodes which
can be reached from I, as well as from other nodes already added to the chain,
and have a high (low) number of outgoing (incoming) paths to (from) nodes
in V/L. Indeed, the algorithm returns an ordered list of nodes which could be
straightforwardly transformed into a chain.

Algorithm 1. Single chain identification algorithm

1: findChain (G =< V, E >,I) Output: L: chain of nodes
2: L (;

3: repeat

4 best mu «— —o0;

5. for all be V/L do

6: cc «— countConnections(L, G, 1,b);

7 inC' — incoming(V/L,b); outG «— outGoing(V/L,b);
8: if ((cc #0) OR (inC # 0) OR (outG # 0)) then
9: <« cc+ outG — inC

10: if best mu < p then

11: best b« b; best mu «— u;
12: end if

13: end if

14: end for

15:  if (best mu <> —o0) then

16: L.add(best b);

17:  end if

18: until best mu = —o0

19: return L

5 The Application: Learning Reading Order of Layout
Components

In this paper, we investigate an application to the document image understand-
ing problem. More specifically, we are interested in determining the reading order
of layout components in each page of a multi-page document. Indeed, the spatial
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order in which the information appears in a paper document may have more to
do with optimizing the print process than with reflecting the logical order of the
information contained. Determining the correct reading order can be a crucial
problem for several applications. By following the reading order recognized in
a document image, it is possible to cluster together text regions labeled with
the same logical label into the same textual component (e.g., “introduction”,
“results”, “method” of a scientific paper). In this way, the reconstruction of a
single textual component is supported and advanced techniques for text process-
ing can be subsequently applied. For instance, information extraction methods
may be applied locally to reconstructed textual components. Moreover, retrieval
of document images on the basis of their textual contents is more effectively
supported.

Several works on reading order detection have already been reported in the
literature [26][12][21][25][1] [4]. A common aspect of all methods is that they
strongly depend on the specific domain and are not “reusable” when the classes
of documents or the task at hand change. There is no work, to the best of
our knowledge, that handles the reading order problem by resorting to machine
learning techniques, which can generate the required knowledge from a set of
training layout structures whose correct reading order has been provided by the
user. In previous works on document image understanding, we investigated the
application of machine learning techniques to several knowledge-based document
image processing tasks, such as classification of blocks [3], automatic global lay-
out analysis correction [I§], classification of documents into a set of pre-defined
classes and logical labelling. Following this mainstream of research, herein we
consider the problem of learning the reading order.

In this context the limitations posed by the single table assumption are quite
restrictive for at least two reasons. First, layout components cannot be realis-
tically considered independent observations, because their spatial arrangement
is mutually constrained by formatting rules typically used in document editing.
Second, spatial relationships between a layout component and a variable num-
ber of other components in its neighborhood cannot be properly represented
by a fixed number of attributes in a table. Even more so, the representation of
properties of the other components in the neighborhood, because different lay-
out components may have different properties (e.g., the property “brightness”
is appropriate for half-tone images, but not for textual components). Since the
single-table assumption limits the representation of relationships (spatial or non)
between examples, it also prevents the discovery of this kind of pattern, which
can be very useful in document image mining.

For these reasons, the ILP approach proposed in this paper seems to be ap-
propriate for the task at hand. In ATRE, training observations are represented
by ground multiple-head clauses [I5], called objects, which have a conjunction of
simple literals in the head. The head of an object contains positive and negative
examples for the concepts to be learned, while the body contains the description
of layout components on the basis of geometrical features (e.g. width, height)
and topological relations (e.g. vertical and horizontal alignments) existing among
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Fig. 1. A document page: the input reading order chain. Sequential numbers indicate
the reading order.

blocks, the type of the content (e.g. text, horizontal line, image) and the logic
type of a block (e.g. title or authors of a scientific paper). Terms of literals in

obj

ects can only be constants, where different constants represent distinct layout

components within a page. An example of object description generated for the
document page in Figure[lis the following:

object("tpamilT 1-13', [class(p) = tpami,

first(0) = true, first(1l) = false, ...

succ(0, 1) = true, suce(1,2) = true, ..., succ(7,8) = true, succ(2,10) = false,...],
[part of (p,0) = true,...,

height(0) = 83, height(1) = 11, ..., width(0) = 514, width(1) = 207, ...,

type of (0) = text, ..., type of (11) = hor line,

title(0) = true, author (1) = true, af filiation(2) = true, .., unde fined(16) = true,
x pos centre(0) = 300,z pos centre(l) = 299, ...,

y pos centre(0) = 132,y pos centre(l) = 192, ...,

on top(9,0) = true, on top(15,0) = true, ..., to right(6,8) = true, ...
alignment(16,8) = only right col, alignment(17,5) = only left col, ...

class(p) = tpami, page(p) = first]).

The constant p denotes the whole page while the remaining integer constants

(0,

nu

1, ..., 17) identify distinct layout components. In this example, the block
mber 0 corresponds to the first block to read (first(0) = true), it is a
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textual component (type of(0) = text) and it is logically labelled as ‘title’
(title(0) = true). Block number 1 (immediately) follows block 0 in the reading
order (succ(0,1) = true), it is a textual component and it includes information
on the authors of the paper (author(l) = true).

As explained in the previous sections, ATRE learns a logical theory T defining
the concepts first/1 and succ/2 such that T is complete and consistent with
respect to the examples. This means that it is necessary to represent both posi-
tive and negative examples and the representation of negative examples for the
concept suce/2 poses some feasibility problems due to their quadratic growth.
In order to reduce the number of negative examples, we resort to sampling tech-
niques. In our case, we sampled negative examples by limiting their number to
1000% of the number of positive examples. This way, it is possible to simplify the
learning stage and to have a logical theory which is less specialized and avoids
overfitting.

In order to evaluate the applicability of the proposed approach to reading
order identification, we considered a set of multi-page articles published in an
international journal. In particular, we considered twenty-four papers, published
as either regular or short articles, in the IEEE Transactions on Pattern Analysis
and Machine Intelligence (TPAMI), in the January and February issues of 1996.
Each paper is a multi-page document; therefore, we processed 211 document
images. Each document page corresponds to a 24bit TIFF color image.

Initially, document images are pre-processed in order to segment them, per-
form layout analysis, identify the membership class and map the layout structure
of each page into the logical structure. Training examples are then generated
by manually specifying the reading order. In all, 211 positive examples and
3,263 negative examples for the concept first/1 and 1,418 positive examples
and 15,518 negative examples for the concept suce/2 are generated. The average
number of layout components in training chains is about 8.0.

We evaluated the performance of the proposed approach by means of a six-fold
cross-validation: the dataset is first divided into six folds of equal size and then,
for every fold, the learner is trained on the remaining folds and tested on it.

For each learning problem, statistics on precision and recall of the learned
logical theory are recorded. In order to evaluate the ordering returned by the
proposed approach, we resort to metrics used in information retrieval to evaluate
the returned ranking of results [9]. Herein we consider the metrics valid for partial
orders evaluation.

In particular, we consider the normalized Spearman footrule distance which,
given two complete lists L and Lq on a set S (that is, L and L, are two different
permutations without repetition of all the elements in S), is defined as follows:

> pes abs(pos(L,b) — pos(L1,b))
where the function pos(L, b) returns the position of the element b in the ordered
list L. F(L,Lq) is always between 0 and 1, where 0 means that L and Ly are
exactly the same, while 1 means that the two lists are completely in the opposite
order. In other terms, the lower the F(L, L), the better.
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The induced footrule distance F(L|r,, L) is the variant of F'(L, Ly) computed
by projecting the list L on Lj: it is used when L; is a sublist of L.

The normalized Spearman footrule distance can be straightforwardly gener-
alized to the case of several lists:

F(L,Ly,...,Ly) =1/k Y F(L,L;).
i=1...k

In order to consider partial (and not total) orders, we resorted to a variant called
(induced normalized footrule distance):

F(LaL17"'aLk):1/k Z F<L LiaLi)

i=1...k

Since this measure does not take into account the length of single lists, we also
adopted the normalized scaled footrule distance:
P11y — Sves s(pos(L /1Ll = pos(L1,b)/ |1 o)
|L1|/2
Also in this case it is possible to extend the measure to the case of multiple lists:

F'(L,Ly,...,Ly) =1/k>",_, . F'(Ll1,, Li).

In this study, we apply such distance measures to chains. In particular, both
FD= F(L|.,,L1) and SFD=F'(L|,, L1) are used in the evaluation of single
chain identification, while IFD=F(L, L1,..., L) and ISFD=F'(L, Ly, ..., L)
are used in the evaluation of multiple chains identification.

Results reported in Table [Tl show that the system has a precision of about
65% and a recall greater than 75%. Moreover, there is no significant difference
in terms of recall between the two concepts, while precision is higher for the
succ concept. This is mainly due to the specificity of the clauses learned for the
concept first: clauses learned for the concept first cover (on average) fewer
positive examples than clauses learned for the concept succ (see Table [2). We
can conclude that the concept first appears to be more complex to learn than
the concept succ, probably because of the lower number of training examples
(one per page).

Experimental results concerning the reconstruction of single/multiple chains
are reported in Table [3l We recall that the lower the distance value the better
the reconstruction of the original chain(s). By comparing results in terms of

Table 1. Precision and Recall results shown per concept to be learned

Concept first/1 suce/2 Owverall
Precision % Recall% Precision% Recall% Precision% Recall%

FOLD1 75.00 50.00 76.90 64.10 76.60 61.80

FOLD2 66.70 63.20 74.10 65.20 73.00 64.90

FOLD3 74.30 78.80 81.00 66.10 80.10 67.40
FOLD4 69.40 71.40 67.80 56.30 68.00 58.20
FOLD5 66.70 66.70 78.40 68.70 76.80 68.40
FOLD6 71.00 61.10 79.40 62.90 78.20 62.60

AVG 70.52 65.20 76.27 63.88 75.45 63.88
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Table 2. Number of learned clauses per positive examples

Concept first to read/1 succ in reading/2

No of clauses Training POS exs No of clauses Training POS exs
FOLD1 42 175 162 1226
FOLD2 46 173 145 1194
FOLD3 42 178 149 1141
FOLD4 42 176 114 1171
FOLD5 40 178 166 1185
FOLDG6 41 175 177 1173
AVG coverage 4.17 7T

Table 3. Reading order reconstruction results

Concept Multiple chains Single chain
AVG. IFD% AVG. ISFD% AVG. FD% AVG. SFD%

FOLD1 13.18 21.12 47.33 10.17
FOLD2 10.98 18.51 46.32 8.13
FOLD3 1.31 26.91 47.32 17.63
FOLD4 1.32 24.00 49.96 14.51
FOLD5 0.90 22.50 49.31 10.60
FOLDG6 0.90 27.65 54.38 12.97
AVG 4.76 23.45 49.10 12.33

the footrule distance measure (IFD vs FD), we note that the reconstruction of
multiple chains shows better results than the reconstruction of single chains.
Indeed, this result does not take into account the length of the lists. When
considering the length of the lists (ISFD vs. SFD) the situation is completely
different and the reconstruction of single chains outperforms the reconstruction
of multiple chains.

Some examples of clauses learned by ATRE are reported below:

—_

. first(X1) = true «— x pos centre(X1) € [55..177],
y pos centre(X1) € [60..121], height(X1) € [98..138].

2. first(X1) = true « title(X1) = true, x pos centre(X1) € [293..341],
suce(X1, X2) = true.

3. succ(X2,X1) = true «— af filiation(X 1) = true, author(X2) = true,
height(X1) € [45..124].

4. succ(X2, X1) = true — alignment(X1, X3) = both columns,

on top(X2, X3) = true, succ(X1, X3) = true, height(X1) € [10..15]

They show that ATRE is particularly indicated for the task at hand since it
is able to identify dependencies among concepts to be learned or even recursion.

6 Conclusions

In this paper, we present an ILP approach to the problem of inducing a partial
ordering between basic components of complex objects. The proposed solution
is based on learning a logical theory which defines two predicates first/1 and
succ/2. The learned theory should be able to express dependencies between
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the two target predicates. For this reason we used the learning system ATRE
which is able to learn mutually recursive predicate definitions. In the recognition
phase, learned predicate definitions are used to reconstruct reading order chains
according two different modalities: single vs. multiple chains identification.

The proposed approach can be applied to several application domains. In
this paper, it has been applied to a real-world problem, namely detecting the
reading order between layout components extracted from images of multi-page
documents. Results prove that learned logical theories are quite accurate and
that the reconstruction phase significantly depends on the application at hand.
In particular, if the user is interested in reconstructing the actual chain (e.g. text
reconstruction for rendering purposes), the best solution is in the identification
of single chains. On the contrary, when the user is interested in recomposing
text such that sequential components are correctly linked (e.g. in information
extraction), the most promising solution is the identification of multiple chains.

For future work we intend to compare the logic-based approach proposed in
this paper with a probabilistic-based approach reported in [5]. Moreover, we plan
to extend our empirical investigation to other application domains as well as to
synthetically generated datasets.
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Abstract. This paper brings two contributions in relation with the se-
mantic heterogeneous (documents composed of texts and images) infor-
mation retrieval: (1) A new context-based semantic distance measure for
textual data, and (2) an IR system providing a conceptual and an auto-
matic indexing of documents by considering their heterogeneous content
using a domain specific ontology. The proposed semantic distance mea-
sure is used in order to automatically fuzzify our domain ontology. The
two proposals are evaluated and very interesting results were obtained.
Using our semantic distance measure, we obtained a correlation ratio
of 0.89 with human judgments on a set of words pairs which led our
measure to outperform all the other measures. Preliminary combination
results obtained on a specialized corpus of web pages are also reported.

1 Introduction

An important lack in the current IRS, is that most of them deal with homo-
geneous data types. We can find those dealing with text content, others with
visual content but rarely with both. Let’s take the example of a web page. If
we compose a web page by its different components, (where each component
represents a data type), we’ll find that all parts do not necessarily represent the
same piece of information. Even on a single document, each component will have
a distinct meaning for the user. So if we treat only text for example, we wash
out all the information contained in images, and inversely. Let’s mention that
indexing an image by the text surrounding it, as most search engines do, is not
the real solution since text does not necessarily represent the image content.

Any IRS contains mainly two important components: a data representation
structure which is generally translated by the use of an index for capturing the
semantic of the data and accelerating the access to the low level data, and a
querying strategy which enables the end user to express his/her query to the
system. To be efficient, these two components necessitate another important el-
ement which is a semantic similarity measure. A semantic similarity measure is
important to enable capturing the semantic proximity between pieces of infor-
mation (concepts, words, images, etc...).

Z.W. Ras, S. Tsumoto, and D. Zighed (Eds.): MCD 2007, LNAI 4944, pp. 224 2008.
© Springer-Verlag Berlin Heidelberg 2008
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In this paper, we present a novel retrieval system that represent documents by
their text and image content and thus, by multiple information sources. So, we
bring two contributions in relation with the semantic heterogeneous (documents
composed of texts and images) information retrieval: (1) A new context-based
semantic distancd] measure for textual data (since we are dealing with keyword-
based information retrieval), and (2) a IR system providing a conceptual and
automatic indexing of documents by considering their heterogeneous content us-
ing a domain specific ontology. In order to maximize our system’s performances,
we automatically fuzzify our knowledge unit using our proposed semantic dis-
tance measure.

The rest of this paper is organized as follows: In Section 2, we present and
evaluate the new semantic distance measure between words. Our heterogeneous
information retrieval system is introduced and detailed in Section 3. We conclude
and give some future work in Section 4.

2 Semantic Similarity

In text-based applications, beyond managing synonymies and polysemies, one
need to measure the degree of semantic similarity between two words/ conceptsﬂ;
let’s mention: Information retrieval, question answering, automatic text sum-
marization and translation, etc. Many semantic similarity measured] have been
proposed in the literature. We can distinguish between knowledge-based mea-
sures and corpus-based measures.

On the one hand, knowledge-based measures offer reliable results given their
hand-crafted ‘semantic’ logical structure. Taxonomies, like WordNet [I5] and
Mes}ﬂ are widely used for that purpose. These measures can be divided into an
edge-based measures [20][I1][29], a features-based measures [26], or an Informa-
tion Content (IC) measures [21] [10] [13].

On the other hand, corpus-based measures are based on a statistical analysis
of large text corpora. They have the advantage of being self-independent; they
don’t need any external knowledge resources, which can overcome the cover-
age problem in taxonomies. In this category, we can find co-occurrence based
measures [5][25] and context-based measures [4][g].

2.1 A MultiSource Context-Dependent Semantic Distance Between
Concepts

Our Context-Dependent Measure. A major lack in existing semantic sim-
ilarity methods is that no one takes into account the context or the considered

! 'We consider distance by its dissimilarity which is the inverse of similarity. Then,
greater distance values imply greater difference between compared objects.

2 In the rest of the paper, ‘words’ is used when dealing with text corpora and ‘concepts’
is used when dealing with taxonomies where each concept is represented by a list of
words holding a sense.

3 For a more detailed state of art, readers are invited to read our previous paper 22].

* http://www.nlm.nih.gov /mesh/
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domain. However, two concepts similar in one context may appear completely un-
related in another context. Let’s take the example of heart and blood. In a general
context, these two concepts can be judged to be very similar. However, if we put
ourselves in a medical context, heart and blood define two largely separated con-
cepts. They will be even more distant if the context is more specifically related to
cardiology. Our context-dependent approac}E suggest to adapt semantic similar-
ities to the target corpus since it’s the entity representing the context or the do-
main of interest in most text-based applications. This method is inspired by the
Information Content (IC) theory of Resnik [21I] and by the Jiang [10] measure.

In spite of using a text corpus, the IC proposed measures are unable to capture
the target context since they rely uniquely on the probability of encountering a
concept in a corpus which is not a sufficiently adaptive measure to reflect its de-
pendency to a given context. A concept very frequent in some few documents and
absent in many others cannot be considered to be “well” representative for the
corpus. Thus, the number of documents where the concept occurs is another im-
portant factor that must be considered. In addition to that, it’s most likely that a
concept c1 -with a heterogeneous distribution among documents - is more discrimi-
native than a concept cs with a monotone repartition which can reveal less power of
discrimination over the target domain (Experimentations made assess our thesis).

Instead of assigning IC values to concepts, we assign weights for taxonomy’s
concepts according to a Context-Dependency C'D measure for a given corpus C'.
The goal is to obtain a weighted taxonomy, where ‘heavier’ subtrees are more
context representative than ‘lighter’ subtrees. This will allow us to calculate se-
mantic similarities by considering the actual context. Therefore, lower similarity
values will be obtained in ‘heavy’ subtrees than ‘light’ subtrees. Thus, in our
heart/blood example, we tend to give a high similarity for the concept couple in
a general context, and a low similarity in a specific context like medicine.

Consequently, we introduce our C'D measure which is an adapted version
of the standard ¢f — idf. Given a concept ¢, C'D(c¢) is a function of its total
frequency freq(c), the number of documents containing it d(c), and the variance
of its frequency distribution var(c) over a corpus C:

_ log(1+ freq(c)) log(1l+d(c))

CD(e) log(N) ¥ log(D)

* (14 log(1 4 var(c))) (1)
Where N denotes the total number of concepts in C' and D is the total number
of documents in C. The log likelihood seems adaptive to such purpose since it
helps to reduce the big margins between values. This formula ensures that if a
concept frequency is 0, its C'D will equals 0 too. It ensures also that if ¢ have an
instance in C, its CD will never be 0 even if var(c) = 0.

Note that the C'D of a concept ¢ is the sum of its individual C'D value with
the C'D of all its subconcepts in the taxonomy. The weights propagation from
the bottom to the top of the hierarchy is a natural way to ensure that a parent
even with a low individual C'D will be considered as highly context-dependent
if its children are well represented in the corpus

5 The approach is presented in more detail in our previous paper 22].
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To compare two concepts using the C'D values, we assign a Link Strength (L.S)
to each ‘is-a’ link in the taxonomy. Assume that ¢; subsumes co, the LS between
¢1 and ¢y is then calculated as follows: LS(c1,¢2) = CD(c1) — CD(c2). Then our
Context-Dependent Semantic Sistance (CDSD) is calculated by summing the
log likelihood of LS along the shortest path separating the two concepts in the
taxonomy:

Dist(cy,c2) = Z log(1 + LS(c, parent(c)))
ceSPath(ci,cz)

Where S Path denotes the shortest path between ¢; and cs.

Combinations with other Measures. First, at the corpus level, the promis-
ing rates attained by the corpus-based word similarities techniques and espe-
cially for the co-occurrence based ones has pushed us to combine them with our
context-dependent measure in order to reach the best possible rates. However,
two similar words can appear in the same document, paragraph, sentence, or a
fixed-size window. It’s true that smaller window size can help identifying rela-
tions that hold over short ranges with good precisions, larger window size, yet too
coarse-grained, allows to detect large-scale relations that could not been detected
with smaller windows. We can say that if small windows improve precision, a
large windows improve recall.

We have chosen to combine both techniques in order to view relations at
different-scales. At the low scale, we use the PMI measure described above with
a window size of 10 words. At the large scale, we calculate the Euclidian distance
between words vectors where each word is represented by its tf.idf values over
the documents.

Secondly, at the taxonomy level, a feature based measure is used. A part of
their simple conceptual structure, taxonomies like Wordnet provide users with
additional resources which describe most entities. Information in Wordnet is
organized around logical groupings called synsets. Each synset is attached to a
description set, a list of synonyms, antonyms, etc..In order to take advantage of
the full information package in such rich resources, we have chosen to combine
our C'D measure also with the feature-based measure proposed by Tversky [26]
which assumes that the more common characteristics (i.e. synonyms, antonyms,
meronyms, etc..) two objects have and the less non common characteristics they
have, the more similar the objects are.

2.2 Evaluation and Results

To evaluate our approach, a benchmark composed of a corpus of 30,000 web
pages along with the WordNet taxonomy is used. The web pages are crawled
from a set of News web sites (reuters.com, cnn.com, nytimes.com...).

The most intuitive way to evaluate a semantic similarity/distance is to com-
pare machine ratings and human ratings on a same data set. A very common set
of 30 word pairs is given by Miller and Charles [16]. M&C asked 38 undergrad-
uate students to rate each pair on a scale from 0 (no similarity) to 4 (perfect
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synonymy ). The average rating of each pair represents a good estimate on how
similar the two words are. The correlation between individual ratings of human
replication was 0.90 which led many researchers to take 0.90 as the upper bound
ratio. For our evaluations, we’ve chosen the M&C subset of 28 words pairs which
is the most commonly used subset for that purpose. Note that since our measure
calculates distance, the M&C distance will be: dist = 4 — sim where 4 represent
the maximum degree of similarity.

When comparing our distance results with the M&C human ratings, the
context-dependency C'D method alone gave a correlation of 0.83 which seems
to be a very promising rate. Then, we have combined our measure with others
by trying multiple combination strategies(See the previous section). By doing
this, we could increase our correlation ratio to 0.89 which is not too far from
human correlations of 0.905. This obtained rate led our approach to outperform
the existing approaches for semantic similarity (see Table [T).

Table 1. Comparison between the principal measures and our two-level measure

Similarity method Type Correlation with M&C
Human replication Human 0,901
Rada Edge-based 0,59
Hirst and St-Onge Edge-based 0,744
Leacock and Chodorow Edge-based 0,316
Resnik Information Content 0,774
Jiang Information Content 0,848
Lin Information Content 0,821
CDSD Context-Dependent 0,830
our multisource measure Hybrid 0,890

Our method shows an interesting result whether on an individual or on a
combination scale. A part of its interesting correlation coefficient of 0.83, our
CD method has the advantage to be context-dependent, which means that our
results are flexible and can vary from one context to another. We argue that
our measure could perform better if we “place” human subjects in our corpus
context. In other terms, our actual semantic distance values reflect a specific
context that does not necessarily match with the context of the human subjects
during the R&C experiments.

We presented in this section our new multisource context dependent semantic
distance measure between concepts. In the next section, we detail the architec-
ture as well as he different components of our content-based heterogeneous data
retrieval system. We will also demonstrate the use of the proposed similarity
measure in the global architecture.

3 Owur Content-Based Retrieval System

We propose an approach that enables semantic retrieval on documents containing
heterogeneous information sources. The approach we are proposing is based on
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the translation of all the data forms into a textual form(following an annotation
process for images and a normalization process for text documents for example).
That’s where measuring a distance between two words/concepts takes all its
importance in the whole retrieval process.

In the following, we describe the general system architecture of our system
and then we detail its three different layers: the structuring layer, the semantic
interpretation layer, and the querying layer.

3.1 General Architecture

Figure [ illustrates the general architecture of our approach. This architecture
is composed of three layers: (1) low level layer, (2) high level (semantic) layer,
and (3) querying layer.

(1) Low level layer - D pre-pr ing & (@ (2) High level layer — B
Documents indexing
: Weightened
Image Neighborhood || Regions
Processing Visual Graphs labels
isti ™| cat07, Agre
- A gated Fuzzy Ontology
(eolor..) grass 0.6 \\‘ terms weights (Fuzzy
-sky 0.1 —<al 0.8 concapts,
\gred: -grass 0.5, ——= Fuzzy relation,
~chair 0.3 Fuzzy logics)
Terms g v 00
P nir Weightened
NLP Words Identification Tem‘g's
=1 | (mycaton cat 0.7,
the chair...) -chair 0.3
Indexing
N C——
'
P
Weightened Document
We Terms Fuzzy D i
Keywords NLP fB::: Kentificall Terms Ontology i:r’usegpts mr;mﬂ 3 lEDrBS;ﬂt'xﬂﬁDﬂ‘
(& cat sitting on | sitting, on, (cat, grass) ™ _orass 0.7 —cal 0.9
the grass) tha, grass) ~grass 0.7
-domestic 0.3
-chair 0.2
Query (3) Querying layer — Documents retrieving
p SV NS _/

Fig. 1. General Architecture of our semantic based heterogeneous data retrieval frame-
work

Firstﬁ7 at the low level layer, we take as an input the raw representation of
the document. We divide it into multiple parts, where each part corresponds
to one data type, in order to process each part separately. The output of this
layer is a list of terms representing each document’s part contentfd. Second, at
the high level layer, we take as an input the obtained lists of keywords which
will be combined and then mapped to a fuzzy domain ontology that provides, as
an output, one single semantic representation of the whole document. Note that
we combine only lists concerning parts of the same document. Finally, at the

5 This operation is made Off-line.
" The number of lists depends on the number of document’s parts.
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querying 1ayerﬁ, keywords are used to express the user’s needs. These keywords
are mapped to the same ontology to locate the correspondent concepts. A set of
relevant documents is returned from the database according to their scores.

In the following sections, we detail the different steps introduced above.

3.2 Low Level Layer — Document Pre-processing

Image Processing. One of the most important challenges in imagery is se-
mantics association to an image. Indeed, image processing methods associate for
each image a features vector (or vectors) calculated on the image. These features
are known as “low level features” (color, texture, etc.). The interrogation of an
image database is then done by introducing an image query into the system and
its comparison to the available ones using similarity measures [27]. Thus, no
semantics is associated to images with this process.

The common way for semantics assignment to an image is annotation. Multi-
media data annotation is the task of assigning, for each multimedia document, or
for a part of the multimedia document, a keyword or a list of keywords describ-
ing its semantic contents. This function can be considered as a mapping between
the visual aspects of the multimedia data and their high level characteristics.

There does not exist a lot of work on the automatic annotation of images.
There are methods which apply a clustering of the images and their associated
keywords in order to make it possible to attach a text to images [1][2][3]. With
these methods, it is possible to predict the labels of a new image by calculating
some probabilities.

Minka and Picard [I9] proposed a semi-automatic image annotation system in
which the user chooses the area to be annotated in the image. A propagation of
the annotations is carried out by considering textures. Maron et al., [14] studied
the automatic annotation using only one keyword at the same time. Mori et
al., [23] proposed a model based on co-occurrences between images and keywords
in order to find the most relevant keywords for an image. The disadvantage of this
model is that it requires a large training sample to be effective. Dyugulu et al., [6]
proposed another model, called translation model, which is an improvement of
the co-occurrence model suggested by Mori et al., [23] by integrating a training
algorithm. Probabilistic models such as Cross Media Relevance model [9] and
Latent Semantic Analysis [I7] were also proposed. Jia and Wang [12] use the
two-dimensional hidden markov chains to annotate images.

To handle images semantics in this work, we adopt the proposed method in [7].
This method is based on an interesting geometrical structure, a relative neighbor-
hood graph [24]. This structure combines, at the same time, a distance measure
and the topology of the multidimensional space to determine the neighbors of
each point (image in this case) in the considered space. The annotation process
is performed into two levels: a) the indexing level where images are structured
as a neighborhood graph using only their low level features (color, texture, etc.),
and b) the Decision making level where the neighbors of an unlabeled image are

8 This operation is made On-line.
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located in the graph and the potential annotations, based on score calculation,
are affected to the unknown image. More details about this method are available

in [7].

Text Processing. As images, the raw text of the document is treated sepa-
rately as well. In order to extract terms from text, classic Natural Language
Processing (NLP) techniques are applied. A tokenizer is used first to localize
words, numbers, punctuations with their different positions in text. A sentence
splitter is used next. Then, a morphological and a syntactic analysis are per-
formed in order to identify respectively grammatical Part Of Speech (POS) for
each word which will serve for the lemmatisation process. Lemmatisation in-
volves the reduction of words to their basic lexeme. This normalization step is
necessary in order to 1)treat the inflected forms of words and to 2) facilitate the
matching with ontology concepts that are usually presented in their lemmatised
forms.

After that, we apply the trigram approach on words along with a set of gram-
matical rules in order to identify the candidate terms to be an ontological con-
cepts. Candidate and non candidate terms are then assigned a normalized tf.idf
weight (term frequency/inverse document frequency). At the end, the text part
of the document is represented simply by a set of terms and weights.

3.3 High Level Layer — Document Indexing

The main goal in this layer is to reach a semantic interpretation of the document.
However, keywords or terms extracted at the low level layer are not enough
for that purpose. These keywords, are still on an intermediate or object level,
and need further treatments to be on a semantic machine understandable level.
That’s where our knowledge-unit is involved. Extracted terms from text along
with deduced labels from images are all redirected to a domain ontology in order
to provide a semantic annotation for document content. Let’s mention that our
system purposes are not for a generic domain. Our system deals with specialized
corpora along with domain specific ontologies.

Before the concept mapping, an aggregation step is necessary in order to
merge obtained lists from the low level layer into one single list. We use the
following formula:

D1 Whyi

Wi — n (2)

Where:

— wg; is the weight of term wy in document D;;
— n is the total number of parts in document D;;
— Wy is the weight of term wy, in part P; of document D;.

As we've said earlier, each term is associated to a weight representing its
importance in the document. Since we treat particular domains, concepts weights
should be a function of their document importance and their domain relative
importance. Obviously, in a domain ontology, not all concepts represent the
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Fig. 2. Illustration Example of a fuzzy ontology

same importance for the target domain. One concept can be more discriminative
or more domain-dependent from others, and thus, should be assigned different
weights.

That’s the reason why we’ve chosen to use fuzzy ontologies which are an
extension of the crisp ontologies [28][I§]. Since knowledge can be fuzzy, its rep-
resentation should be fuzzified. Fuzzification can be integrated to an ontology
by using fuzzy concepts, fuzzy relations, and fuzzy logics. It consists of assigning
weights to concepts, relation and logical rules. (See figure [2]).

Ontology fuzzification is done in an automated manner by making use of
our semantic distance method described above. On the one hand, concepts in
our domain ontology are assigned weights which correspond to the C'D values
(described above) that represent concept’s dependency to a particular context
represented by a text corpus. On the other hand, the ‘is-a’ relations in the ontol-
ogy are assigned weights which represent the semantic similarity (as described
above) between the two target linked concepts. The semantic similarity is cal-
culated by inversing the semantic distance: STM = 1/Dist.

The aggregated terms with their weights are then sent to the ontology in order
to pass from the low level layer to the semantic layer. Certainly, not all terms will
be found in the domain ontology. Thus, the result is a set of non-ontological and
ontological terms (concepts). The non-ontological terms are then used to semi-
automatically enrich the ontology, a process out of the scope of this paperﬁ.
Terms weight at the low level layer and the concepts weights in the ontology are
both used to recalculate each concept weight in the document at the semantic
layer using the following formula:

g = (2 o) % ®)

Where:

— fwy; is the final weight of concept k£ in document D;;

— owy, is the weight of concept k in the ontology (its C'D value);

— wy; is the weight of term k in document D; (calculated using the above
formula);

Note that if a term has been found in the ontology i.e. Ontological term,
its ontological weight (owy) corresponds to the weight of the concept in that

9 This part will be detailed in our future publications.
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ontology. Otherwise, if the term isn’t in the ontology i.e. non-ontological term,
its ontological weight is set to 0. So, its weight is divided by 3 in order to penalize
this term since we consider that it’s not a domain close term.

The interest of this formula is that the calculated concepts weights take into
account the term importance in the document and its importance for the con-
sidered domain.

We'’ve decided not to make any concept expansion at this indexing level.
Experimentations have shown that expanding both documents and queries can
result to a lot of sense deviations and imprecisions.

3.4 Querying Layer — Document Retrieving

As we mentioned before, we deal only with ontology-based keywords augmenting.
The same process done for text indexing is applied for queries. Query keywords
are mapped to the ontology in order to extract concepts. Query will then be
divided into terms (non-ontological terms) and concepts (ontological terms).
These concepts are then expanded to another linked concepts sharing a link
weight greater than a fixed threshold 0. Relations weights (which are semantic
similarities) in the ontology are used to calculate the deduced concepts weights.
Consider the Figure 2l Assume that the concepts tiger, cat, dog were identified
in a query ¢ using a threshold 0 = 0.2. The concept dangerous will be used to
expand the query ¢ to ¢’ by using the relations weights between R(dangerous —
tiger) and R(dangerous — dog) only since R(dangerous — cat) < 0.

Finally, the following formula is used to calculate the weight of a document
in the database according to the query:

wig = Y ja (wig X fur) (4)
Where:

— wjq is the weight of the document D; according to the query ¢;
t is the total number of terms within the query g;

— wyq is the weight of term [ in a query ¢;

— fwy; is the final weight of concept [ in the document D;.

The weight of term [ in a query ¢ is determined according to three situations:

— if the query term [ is an ontological term, wq = 1;

— if the query term [ is inferred, w;, will be the weight of the relation between
the origin query concept and the deducted one;

— if the query term [ is a non ontological term, its weight will be the maximum
of the weights of the query terms obtained by expansion.

Our objective by setting up these weights query is to create a hierarchy of
importance between terms. Thus, the query ontological terms are at the top and
the expanded ontological ones are at the bottom.
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3.5 System Evaluation

In this section we present some preliminary results of our approach. To perform
the experiments, we built a small corpus of 50 web pages. Each web page contains
texts and images. All the pages are related to the domain of animals. We have
used an animal domain ontology that we fuzzified.

Each web page is then decomposed into two parts, the first part containing
images and the second part containing text. Each document is automatically
analyzed and annotated by two lists of keywords: a list of keywords describing
the image content and another one describing the text content. These lists are
merged using the proposed framework described beforehand.

Semantic based systems evaluation is a very hard task. Since in this case
the classical evaluation measures (recall and precision for example) are neither
efficient nor significant, we make up a user driven evaluation protocol. We con-
sidered ten keyword based queries. The user send his query to the system and
obtains a list of documents. At each iteration, he selects the pertinent docu-
ments to his query. For each selected document, we take into account the part
of interest (image, text, image and text) or the manner of obtaining the result
(query expansion or not).

Generally speaking, 79% of the returned documents contain interesting in-
formation for the user, which seems to be an interesting rate. The graphic of
figure [3 illustrates the average of contribution rate of each data type to the
global result.

Cortribution rat e of each data type
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Fig. 3. Contribution rate of each data type to the final results

By considering the graphic, we can note that the different parts of the system:
data types (images and texts) and query expansion contribute to the whole
result. Text constitutes the most important contribution. We can also note that
the combination of image and text gives also interesting results which constitutes
a major point.
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4 Conclusion and Future Work

Nowadays, retrieving information becomes more and more difficult. This is due
especially to the huge volume and the heterogeneity of the modern databases.
To interact with these kinds of data, one needs tools which can semantically
process them.

In this paper, we have shown the importance of considering the context
when calculating semantic distance between words/concepts. We’ve proposed a
context-dependent method that takes the taxonomy as a principal knowledge re-
source, and a text corpus as a distance adaptation resource for the target context.
We’ve proposed also to combine it with other taxonomy-based and corpus-based
methods. The results obtained from the experiments show the effectiveness of
our approach which led it to outperform the other approaches. We have also
proposed a new framework to handle the heterogeneous data retrieval problem.
Each document is then decomposed into different components (text, image, etc.)
analyzed separately using appropriate techniques. An indexing level insures the
assignment of a significant labels describing the semantic content of each docu-
ment. The approach supports keywords based querying. Document indexing and
query understanding is guided by a domain ontology fuzzified by mean of our
semantic distance measure. The obtained results show the effectiveness and the
interest of the proposed approach.

As for future work, we aim at evaluating the distance measure and compar-
ing it with others by performing a context-driven human ratings, where human
subjects will be asked to rank a same set of words pairs in different contexts.
The machine correlation computed next according to each context will be able to
show more significantly the added-value of our approach. We plan also to test the
retrieval approach on more large databases and compare it to other approaches
(text retrieval and image retrieval approaches), and to extend this approach by
affecting weights for each part of the document reflecting the relative importance
for each data type according to the treated domain.
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Abstract. Retrospective clinical data presents many challenges for data
mining and machine learning. The transcription of patient records from
paper charts and subsequent manipulation of data often results in high
volumes of noise as well as a loss of other important information. In addi-
tion, such datasets often fail to represent expert medical knowledge and
reasoning in any explicit manner. In this research we describe applying
data mining methods to retrospective clinical data to build a predic-
tion model for asthma exacerbation severity for pediatric patients in the
emergency department. Difficulties in building such a model forced us to
investigate alternative strategies for analyzing and processing retrospec-
tive data. This paper describes this process together with an approach to
mining retrospective clinical data by incorporating formalized external
expert knowledge (secondary knowledge sources) into the classification
task. This knowledge is used to partition the data into a number of
coherent sets, where each set is explicitly described in terms of the sec-
ondary knowledge source. Instances from each set are then classified in
a manner appropriate for the characteristics of the particular set. We
present our methodology and outline a set of experiential results that
demonstrate some advantages and some limitations of our approach.

1 Introduction

In his book [I], Motulsky submits “the human brain excels at finding patterns
and relationships ...”. Scientists have long exhibited an aptitude to learn and
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generalize from observations leading them to develop refined methods for de-
tecting patterns and identifying coherent conjectures drawn from experience.
Since their early days, intelligent computer systems have inspired scientists with
their promising potential of supporting such research in medical domains [2].
However, medical data features many difficult domain-specific characteristics
and complex properties [3]. Incompleteness (missing data), incorrectness (noise),
sparseness (non-representative values), and inexactness (inappropriate parame-
ter selection) make up the short list of challenges faced by any machine learning
technique applied in the medical domain [4]. A comprehensive overview of these
and other challenges is presented in [5], where medical data is described as often
being heterogeneous in source as well as in structure, and that the pervasive-
ness of missing values for technical and/or social reasons can create problems
for automatic methods for classification and prediction. Furthermore, translat-
ing physicians’ interpretations based on years of clinical experience to formal
models represents a serious and complex challenge.

An important requirement of medical problem solving or decision support ap-
plications is interpretability for domain users [6]. Such a stipulation dramatically
reduces the choice of machine learning models that can be applied to medical
problem solving to those that can offer systematic justification and explanation
of the prediction process. Such models include classifiers that estimate prob-
abilities (probabilistic), classifiers that identify training examples similar to a
test example (case-based), classifiers that produce rules that can be applied to a
given test example (rule-based), and classifiers that describe decisions based on
a selected set of attributes (tree-based). In this work we have chosen to focus our
prediction efforts on tree-based classifiers. Decision tree classification models are
especially useful in medical applications as a result of their simple interpretation
but also as they are represented in the form typically used for describing clinical
algorithms and practice guidelines. As such a tree-based classification model can
easily be represented in a comprehensible and transparent format if required,
without the need for computer implementation.

In this work, the clinical prediction task is centered on the domain of emer-
gency pediatric asthma where the goal is to develop a classification model that
can provide an early prediction of the severity of a child’s asthma exacerba-
tion. Asthma is the most common chronic disease in children (10% of Canadian
population), and asthma exacerbations are one of the most common reasons
for children to be brought to the emergency department [7]. The provision of
computer-based decision support to emergency physicians treating asthma pa-
tients has been shown to increase the overall effectiveness of health care delivered
in emergency departments [89]. For a patient suffering from an asthma exac-
erbation, early identification of severity (mild, moderate, or severe) is a crucial
part of the management and treatment process. Patients with a mild attack are
usually discharged following a brief course of treatment (less than 4 hours) and
resolution of symptoms, patients with a moderate attack receive more aggres-
sive treatment over an extended observation in the emergency department (up
to 12 hours), and patients with a severe attack receive maximal therapy before
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ultimately being transferred to an in-patient hospital bed for ongoing treatment
(after about 16 hours in the emergency department).

This paper discusses challenges, issues, and difficulties we face in developing a
prediction model for early asthma exacerbation severity using retrospective clin-
ical data. Preliminary analysis of the data without preprocessing resulted in un-
acceptably low classification accuracy. These results forced a rethink of common
methodologies for mining retrospective clinical data. Although not particularly
complex, this data set is characterized by a fair amount of missing values such
that standard methods of feature extraction and classifier tuning fail to pro-
duce acceptable performance. Furthermore, clinically-based “classifiers”, such
as PRAM (section B]) cannot be applied due to the type of data being col-
lected. We employ such a clinical classifier as an external method to evaluate
the data which leads to the identification of sets where PRAM can or cannot be
readily employed We argue that such partitioning will ultimately improve the
classification. Our investigations led us to develop a methodology for classifica-
tion that involves identification and formalization of expert medical knowledge
specific to the clinical domain. This knowledge is referred to as a secondary
knowledge source and its incorporation allowed us to exploit implicit domain
knowledge in the data for more fine-grained data analysis and processing. This
paper demonstrates the usefulness of secondary knowledge to partition medical
data and ultimately to to reduce its complexity. Our experimental evaluation
demonstrates that with such partitioning a decision tree classifier is capable of
overcoming some but not all complexities posed by this dataset. An added ben-
efit is the ability to capture other regularities that should be in asthma data
according to PRAM, thus in a sense, we “extend” its interpretation.

This paper is organized as follows. In Section 2 we describe the retrospectively
collected asthma data used in this analysis. Section B] outlines a methodology
for identifying, formalizing and applying secondary knowledge sources with the
purpose of harnessing and exploiting implicit domain knowledge. An experimen-
tal evaluation of this approach is outlined in Section @] where our results display
that the approach can be applied with some degree of success. We conclude with
a discussion in Section

2 Retrospective Clinical Dataset

The dataset used in this study was developed as part of a retrospective chart
study conducted in 2004 at the Children’s Hospital of Eastern Ontario (CHEO),
Ottawa, Canada. The study includes patients who visited the hospital’s emer-
gency department from 2001 to 2003 for treatment of an asthma exacerbation.
To illustrate the underlying structure of the data, we present the workflow by
which asthma patients are processed in the emergency department (Figure [II).
The workflow shows that a patient is evaluated multiple times by multiple care-
givers at variable time intervals. This information is documented on the patient
chart with varying degrees of completeness. Furthermore, some aspects of evalua-
tion are objective and therefore reliable measures of the patient’s status, however
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Fig. 1. Asthma Assessment Workflow in the Emergency Department at CHEO

other aspects can be quite subjective and less reliably correlated with the pa-
tient’s status. In preparing the final dataset, patient information was divided into
three subcategories for each record; historical and environmental information, in-
formation collected during the triage assessment and information collected at a
reassessment approximately 2 hours after triage. The final dataset consisted of
362 records and each record was reviewed by a physician and assigned to one
of two classes (mild or moderate/severe) using predefined criteria related to the
duration and extent of treatment required, the final disposition (i.e., discharged
or admitted to hospital), and the possible need for additional visits for ongoing
symptoms. In this way, the assigned severity group was used as a gold standard
for creation and evaluation of a prediction model.

The dynamic nature of asthma exacerbations and the collection of assessments
over time would lend itself naturally to a temporal representation for analysis
of data. However, inconsistencies in data recording meant it was not possible
to incorporate a temporal aspect into the analysis. Further difficulties presented
by the data were a significant number of missing values (for some attributes up
to 98%), incorrectness, sparseness, and noise due to the variability with which
information was recorded, and inexactness due to inappropriate parameter se-
lections as well as the problem of “values as attributes” often encountered in
medical data.

3 Secondary Knowledge Sources

Evidence-based medicine is a recent movement that has gained prominence in
current clinical practice as a methodology for supporting clinical decision mak-
ing. The practice of evidence based medicine involves integrating individual
clinical expertise with the best available external clinical evidence from sys-
tematic research [I0]. Individual clinical expertise refers to the proficiency and
judgment that individual clinicians acquire through clinical experience and ex-
ternal clinical evidence describes clinically relevant research usually evaluated
using randomized control trials. In practice evidence based medicine is applied in
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a number of ways, including, through the use of clinical practice guidelines,
specialty-specific literature and clinical scoring systems.

In this research, we utilize external clinical evidence to support the classifica-
tion task. The incorporation of a secondary knowledge source into classification
leads us to define a three step approach to mining retrospective clinical data. In
the first step relevant medical evidence is identified, for example in the form of a
clinical practice guideline for the particular clinical domain. The second step is to
formalize the medical evidence so it can be applied to available data. The third
step involves developing a framework that makes use of the evidence to support
the automatic classification task. The advantage of integrating such knowledge
is that it allows for more effective and natural organization of information along
existing and important data characteristics. As such secondary knowledge can
be viewed as a proxy for an expert built classifier and may be incorporated to
improve the predictive accuracy of the automatic classification task.

3.1 Secondary Knowledge Sources for Pediatric Asthma

The secondary knowledge source identified as relevant for our retrospective
asthma data is the Preschool Respiratory Assessment Measure (PRAM) asthma
index [ITI]. PRAM provides a discriminative index of asthma severity for
preschool children. It is based on five clinical attributes commonly recorded for
pediatric asthma patients, suprasternal indrawing, scalene retractions, wheez-
ing, air entry and oxygen saturation. PRAM is based on a 12 point scale (see
Table[I]) and is calculated using scores of 0, 1, 2, and 3. These scores are assigned
to attributes depending on the presence or absence of values as well as observed
increasing or decreasing values of attributes. PRAM has been clinically validated
as a reliable and responsive measure of the severity of airway obstruction. A pa-
tient with a PRAM score of 4 or less is considered to have a mild exacerbation,

Table 1. PRAM Scoring System

Signs 0 1 2 3
Suprasternal absent present
indrawing

Scalene absent present
retractions

Wheezing  absent expiratory inspiratory  Audible
and without

expiratory stethoscope

/absent with

no air entry

Air normal decreased widespread  absent/
entry bases decrease minimal
Oxygen >95%  92-95% <92%

saturation
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a score between 5 and 8 corresponds to a moderate exacerbation, and a score of
9 or higher corresponds to a severe exacerbation.

In order to identify if the PRAM scoring system was appropriate secondary
knowledge, the retrospective asthma dataset was analyzed for the presence of
PRAM attributes. It was found that four of the five PRAM attributes were
present in our data and values for these attributes may be collected twice for each
record, once at triage and again at reassessment. The next step of our approach
was to formalize the secondary knowledge source so that it could be applied to
the classification task. This process is described in the next subsection.

3.2 Formalizing Secondary Knowledge Sources for Classification

The formalization of the secondary knowledge source involved determining a
mapping from the set of attributes outlined by PRAM to a subset of attributes
from the retrospective asthma data and an associated assignment of scores for
attribute values. This was necessary as not all attributes required to calculate
the PRAM score were present in the retrospective asthma data, and for some
other attributes a 1:1 mapping did not exist. Specifically, the retrospective data
did not contain an attribute corresponding to “Suprasternal Indrawing”, and
“Wheezing” was captured using two attributes in the retrospective data, in-
spiratory wheezing and expiratory wheezing. Also, the PRAM scoring system
describes “Air Entry” using four values (normal, decreased bases, widespread
decrease and absent/minimal), whereas our data defined air entry as either good
(i.e., normal) or reduced. Therefore the formalized mapping was developed in
conjunction with a domain expert (emergency physician), and the rules devised

Table 2. Mapping PRAM attributes and scores

Attribute(s) Value(s) Score
Oxygen Saturation Greater than 95% 0
Oxygen Saturation Greater than 92% and Less than 95% 1
Oxygen Saturation Greater than 88% and Less than 92% 2
Oxygen Saturation Less than 88% 3
Air Entry Good 0
Air Entry (class = mild) Reduced 1
Air Entry (class = other) Reduced 3
Retractions AND Air Entry Absent AND Good 0
Retractions AND Air Entry Absent AND Reduced 1
Retractions AND Air Entry Absent AND “Missing” 2
Retractions Present 2
Expiratory AND Inspiratory Wheeze Absent AND Absent 0
Expiratory AND Inspiratory Wheeze Present AND Absent 1
Expiratory AND Inspiratory Wheeze Present AND Present 2

Expiratory AND Inspiratory Wheeze Absent AND Present Undefined
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for mapping attributes used by the PRAM system to attributes in our data and
their corresponding score assignments are shown in Table

3.3 Building a Classifier by a Secondary Knowledge Source

The final step of our approach was to use secondary knowledge to build a model
for predicting asthma severity. In the retrospective asthma data a decision (class
label) is recorded for each patient along with clinical and historical information.
This class is the final outcome for the patient as recorded in the patient chart
(not the result of the assessment at the 2-hour point) and indicates whether
the patient has suffered a mild or moderate/severe exacerbation. Using the at-
tributes, values and associated scores mapped from the PRAM scoring system
we calculated a PRAM score for each patient in the dataset. This score had
possible values between 0 and 12, where a score of less than 5 indicated a mild
exacerbation and a score of greater than 5 indicated a moderate/severe exacer-
bation. (In our data the moderate and severe categories outlined by PRAM are
collapsed into one group, moderate/severe). The score is then compared with the
class label for each record in the dataset and the set of patients who comply with
the PRAM scoring system are identified. The assignment of PRAM scores allows
for the dataset to be partitioned into instances for which all PRAM attributes
were present and thus a complete and correct PRAM score could be calculated
and instances for which only a partial or no PRAM score could be calculated due
to the absence of values for the PRAM attributes. PRAM attributes may be col-
lected at two stages in the asthma workflow (triage and reassessment), however
analysis of our data demonstrated that such attributes were more likely to be
collected at reassessment (there were many missing values for triage attributes)
and as such the dataset was partitioned using the larger set of reassessed values.
This resulted in a dataset with 147 instances for which the PRAM score was
complete and correct, 206 instances where only a partial or no PRAM score
could be calculated due to missing values and 9 instances for which the score
calculated by PRAM and the class label completely disagreed. These 9 cases
were considered outliers and deleted from the dataset for evaluation.

4 Experimental Evaluation

4.1 Experimental Design

Our evaluation reports results from a number of experiments involving the ret-
rospective asthma dataset where each experiment involved building a decision
tree using the J48 decision tree classifier in Weka[12] to classify data. The first
experiment involved building a classifier on the entire dataset prior to any ap-
plication of secondary knowledge. These results serve as a baseline for classifier
performance upon which to evaluate all subsequent results. In the next experi-
ment secondary knowledge in the form of the PRAM scoring system was applied
to partition the dataset into two sets, one containing PRAM complete and cor-
rect instances and one containing PRAM partial or incomplete instances. The
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purpose of this experiment is to demonstrate that the incorporation of secondary
knowledge into the classification tasks allows for enhanced representation of data
which results in reducing the complexity of the retrospective clinical dataset for
classification. In the final experiment we applied feature selection to the com-
plete original data set twice, once using automatic feature selection (available
in Weka), and a second time by manually selecting combinations of expertly
selected attributes and removing the remaining attributes. The function of this
experiment was to show that neither automatic or expert feature selection can
identify and reduce complexities in the data as efficiently as a classifier that
incorporates secondary or expert medical knowledge, selects important features
and partitions data into sets of similar characteristics.

For each experiment we report classifier performance in terms of percentages
of Sensitivity (Sens) and Specificity (Spec), Predictive Accuracy (Acc) and Area
Under the Curve (AUC) on the positive class. Sensitivity (the true positive rate)
measures how often the classifier finds a set of positive examples. For instance in
this research we consider moderate/severe to be the critical/positive class, there-
fore the sensitivity of moderate/severe measures how often the classifier correctly
identifies patients suffering moderate/severe asthma exacerbations. Specificity
(1 - false positive rate) measures how often what the classifier finds, is in-
deed what it was looking for. Therefore the specificity of the positive class
(moderate/severe) measures how often what the classifier predicts is indeed a
patient with a moderate/severe asthma exacerbation. Analyzing the trade-off
between sensitivity and specificity is common in medical domains and is anal-
ogous to Receiver Operating Characteristics (ROC) analysis [I3I14] used in
machine learning [15].

In addition we report accuracy and AUC where accuracy is the rate at which
the classifier classifies patients (in both classes) correctly while AUC represents
the probability that the classifier will rank a randomly chosen positive instance
higher than a randomly chosen negative instance [16]. Hence AUC measures
the classifier’s ability to discriminate the positive class from the negative class.
In our experiments, we aim to analyze decision tree performance by measuring
its ability to discriminate each positive patient with a moderate/severe asthma
exacerbation. For a given classifier and positive class, an ROC curve [I5/T6] plots
the true positive rate against the rate of false positives produced by the classifier
on the test data. The points along the ROC curve are produced by varying
the classification threshold from most positive classification to most negative
classification and the AUC of a classifier is the area under the ROC curve [16].
For this reason as well as the relatively small size of the dataset we evaluate the
classifier for each patient in the dataset using leave-one-out cross-validation.

4.2 Classifying the Entire Dataset

The first experiment involved building a decision tree on the original dataset
of 362 instances. The results of this experiment are shown in the first row of
Table [l and demonstrate that the retrospective clinical dataset is complex and
that good classification accuracy is difficult to achieve without performing some
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degree of data preprocessing. We include these results as a baseline by which to
measure subsequent classifier performance.

4.3 Classifying PRAM and Non-PRAM Sets

In this experiment the dataset was partitioned by applying the formalized map-
ping from PRAM scoring system to attributes from the retrospective asthma
dataset. This resulted in the dataset being partitioned into those that were
PRAM complete and correct (PRAM set) and those that were either PRAM
partial or incomplete (non-PRAM set). A decision tree was built for each set
and the results are shown in the last two rows of Table Bl Also included for
reference purposes are the results for the entire dataset in the first row.

Table 3. Decision Trees built on PRAM and non-PRAM sets

Set Size Sens Spec Acc AUC
Entire 362 73 63 69 69
PRAM Set 147 93 96 95 98
Non-PRAM Set 206 89 53 74 77

From Table Bl we observe that splitting the datset into different sets based on
formalized secondary knowledge increases classification accuracy of the PRAM
set. For the non-PRAM set classification improves in terms of Sensitivity, Ac-
curacy and AUC. In particular sensitively on the PRAM set increases by 20%
from the baseline. In addition a large gain in AUC from the baseline reflects
the increased probability that a positive example is ranked higher than a neg-
ative example. In fact, when the decision tree is supplemented with secondary
knowledge (the PRAM set) we gain an increase in AUC, and when secondary
knowledge cannot be so easily applied (non-PRAM set), the performance only
improves marginally on that of the baseline. These results demonstrate that the
incorporation of formalized secondary knowledge sources can help with classifi-
cation in such domains “by exposing” the concept to be learned by the decision
tree and thus reducing the overall complexity of the dataset by exploiting domain
knowledge implicitly present in the data. The results represent an overall im-
provement on previous research into classification of clinical data with tree-based
classifiers [9].

However from the results in Table B] we also observe a decrease of 10% in
specificity between the Non-PRAM set and the baseline. This performance is
inadequate in terms of achieving a balance between high sensitivity and high
specificity. We note however that in terms of the problem domain high sensitivity
and low specificity on the positive class translates to the fact that the classifier
is very accurate in identifying moderate/severe patients and recommending they
are kept for an extended time in the emergency department, however at the same
time the classifier is over conservative in recommending that mild patients are
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Fig. 2. The resulting decision tree for the classifier trained on the entire data
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Fig. 3. The resulting decision tree for the classifier trained on PRAM data
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Fig. 4. The resulting decision tree for the classifier trained on Non-PRAM data

kept for longer than usual stays. Such direction of classification a less serious
error than one occurring in the opposite situation.

Furthermore, consider figures 2 Bl and @] which present the resulting decision
tree classifier obtained from training with the entire data, PRAM data only,
and Non-PRAM data respectively. We clearly see that the classifier trained on
the entire data (2]) focuses on clinical measures recorded during the TRIAGE and
the REASSESSMENT phase of the workflow, yet, this classifier delivers the worst
classification performance. On the other hand, building the other two classi-
fiers (figures Bl and @) allows for the consideration of other historically relevant
attributes, such as ALLG FOOD in figure Bl and PREV ED LAST YEAR in figure [l
Despite the difference in all of these classifiers, lower levels of clinically mea-
sured Oxygen saturation remains an indication of severe asthma exacerbation,
see REASSESSED SA02 and TRIAGE SAQ2 subtrees in all three figures.

An important observation is that most PRAM attributes (data attributes
mapped to attributes shown in table [[] on page [242)) are being used in all three
decision trees. This illustrates the significant relevance of these PRAM attributes
to the classification task, thus, providing data-driven evidence to support PRAM.
In addition, these decision trees allows us to extend PRAM and present a more
fine grained representation of it, including dependencies which could be easily
explained and presented to physicians.

4.4 Automatic and Expert-Driven Feature Selection

It is acceptable to state that a reduction in dimensionality of data can reduce
the complexity of underlying concepts that it may represent. The purpose of this
experiment is to demonstrate that data complexity in this domain requires more
than dimensionality reduction to reduce its complexity. We compare results ob-
tained from applying automatic and expert-driven feature selection methods to
those obtained by partitioning the data according to PRAM secondary knowl-
edge. Automatic feature selection is based on standard methods used by the data
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Table 4. Automatic and Expert Feature Selection

Feature Selection Mode Mode  Size Sens Spec Acc AUC
Information Gain Automatic 362 72 63 68 69

Chi-squared Automatic 363 72 63 68 69
Combinatorial Automatic 362 72 65 69 71
Wrapper with Naive Bayes Automatic 362 71 60 70 77
On All Attributes Expert 362 72 66 70 73

On Only PRAM Attributes Expert 362 77 78 70 71

mining community and are available in the Weka software. The expert-driven
feature selection methods are based on selecting attributes observed to useful to
classification from our repeated experiments and by an expert and those out-
lined by the PRAM scoring system. 10 methods of feature automatic selection
were applied to the dataset where each was used in conjunction with a decision
tree for classification. The results for the best four methods are shown in rows
1-4 of Table @l Comparing the results for automatic feature selection to those
for the baseline as outlined in Table Bl we can conclude it is not successful in
reducing the complexity of the dataset. In general results do not display any
improvement in classification except in the case where a wrapper using a Naive
Bayes classifier for optimization is used for feature selection. Here we note an
increase in AUC, however this is at the expense of a large decrease in specificity.
In applying expert feature selection, we built one classifier using all data records
of attributes collected during the reassessment only and another classifier using
only the attributes that were mapped from the PRAM scoring system while still
using all instances available in the dataset. The results for these two experiments
are shown in rows 5-6 of Table[l Again comparing these results to those outlined
for the baseline in Table [3] we observe no significant improvement.

However, by comparing the results from Table [4] to those for classification on
the PRAM and non-PRAM sets in Table B] a number of important conclusions
can be drawn. Partitioning data into different sets for classification based on
secondary knowledge results in much improved classification that of using ei-
ther automatic or expert feature selection. Augmenting the developed classifier
with external knowledge allows for more effective classification by exploiting un-
derlying domain knowledge in the dataset and by organizing data according to
these concepts. Such classification accuracy cannot be captured by a classifica-
tion model developed on the data alone. The partitioning of data does not reduce
the dimensionality of the dataset like traditional methods for classification such
as feature selection, however it manages to reduce the complexity of the dataset
by using secondary knowledge to identify more coherent sets into which data
more naturally fits.

The intention is to use the classification results from the PRAM and non-
PRAM sets from Table B to implement a prediction model for asthma severity.
This can be achieved in a number of ways. One option is to develop a metaclas-
sifer that could learn to direct new instances to either the model built on the
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PRAM set or the model built on the non-PRAM set. For such a metaclassifier
values of PRAM attributes alone may be sufficient to make the decision or it
may be necessary to develop a method by which unseen patients can be related
to the sets (PRAM and non-PRAM) we identify in the dataset. Alternatively the
predictions from both sets could be combined to perform the prediction task.
One option is to use a voting mechanism, another is to build these classifiers
in a manner that produce rankings of the severity of the exacerbation. With
such a methodology the classifier with the highest ranking provides a better in-
sight into the condition. However, such an approach introduces additional issues
in terms of interpretations and calibrations of ranks and probabilities. Such a
study remains as part of our future research directions.

5 Discussion

We have introduced an approach to mining complex retrospective clinical data
by incorporating secondary knowledge to supplement the classification task by
reducing the complexity of the dataset. The methodology involves identification
of a secondary knowledge source suitable for the clinical domain, formalization of
the knowledge to analyze and organize data according to the underlying principle
of the secondary knowledge, and incorporation of the secondary knowledge into
the chosen classification model. In this research we concentrated on classifying
information using a decision tree to satisfy the requirement that classification
should be easily interpreted by domain users. From our experimental results we
draw a number of conclusions. Firstly we have demonstrated that domain knowl-
edge is implicit in the data as the dataset partitions naturally into two sets for
classification with the application of a formalized mapping from the PRAM scor-
ing system. This is in spite of the fact that the mapping was inexact; our dataset
only contained four of the five attributes outlined by PRAM and some attribute
values had slightly different representations. In such a way the application of
secondary knowledge reduces the complexity of the dataset by allowing for the
exploitation of underlying domain knowledge to supplement data analysis, rep-
resentation and classification. As outlined, this approach is more successful than
traditional methods for reducing data complexity such as feature selection which
fail to capture a measure of the expert knowledge implicit in the retrospectively
collected data. A further advantage of the approach was demonstrated by the
ability of the secondary knowledge to help identify outlier examples in the data.
However, the results are still somewhat disappointing in terms of achieving a
balance acceptable in medical practice between high sensitivity and high speci-
ficity in the non-PRAM set. We believe that a high proportion of missing values
in this set is causing difficulties for the classification model. This issue remains
an open problem for future research. In other future work we are interested in
further investigating attributes used by the PRAM system and to test whether
all attributes used by PRAM are necessary for enhanced classification.
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Abstract. In the paper, we propose an approach of POM (peculiarity
oriented mining) centric multi-aspect data analysis for investigating hu-
man problem solving related functions, in which computation tasks are
used as an example. The proposed approach is based on Brain Infor-
matics (BI) methodology, which supports studies of human information
processing mechanism systematically from both macro and micro points
of view by combining experimental cognitive neuroscience with advanced
information technology. We describe how to design systematically cogni-
tive experiments to obtain multi-ERP data and analyze spatiotemporal
peculiarity of such data. Preliminary results show the usefulness of our
approach.

1 Introduction

Problem-solving is one of main capabilities of human intelligence and has been
studied in both cognitive science and Al [9], where it is addressed in conjunction
with reasoning centric cognitive functions such as attention, control, memory,
language, reasoning, learning, and so on. We need to better understand how
human being does complex adaptive, distributed problem solving and reasoning,
as well as how intelligence evolves for individuals and societies, over time and
place [BITTT2T3/17]. Then, we catch problem solving from the standpoint of
Brain Informatics, and address systematically for the solution of a process.

Brain Informatics (BI) is a new interdisciplinary field to study human infor-
mation processing mechanism systematically from both macro and micro points
of view by cooperatively using experimental, theoretical, cognitive neuroscience
and advanced information technology [T6I17]. It attempts to understand human
intelligence in depth, towards a holistic view at a long-term, global vision to
understand the principles, models and mechanisms of human information pro-
cessing system.

Our purpose is to understand activities of human problem solving system by
investigating the spatiotemporal features and flow of human problem solving sys-
tem, based on functional relationships between activated areas of human brain.
More specifically, at the current stage, we want to understand:

Z.W. Ra$, S. Tsumoto, and D. Zighed (Eds.): MCD 2007, LNATI 4944, pp. 252-264] 2008.
© Springer-Verlag Berlin Heidelberg 2008
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— how a peculiar part (one or more areas) of the brain operates in a specific
time;

— how the operated part changes along with time;

— how the activated areas work cooperatively to implement a whole problem
solving system;

— how the activated areas are linked, indexed, navigated functionally, and what
are individual differences in performance.

Based on this point of view, we propose a way of peculiarity oriented mining
(POM) for knowledge discovery in multiple human brain data.

The rest of the paper is organized as follows. Section 2 provides a BI Method-
ology for multi-aspect human brain data analysis of human problem solving
system. Sections 3 explain how to design the experiment of an ERP mental
arithmetic task with visual stimuli standing on BI Methodology. Sections 4 de-
scribe how to do multi-aspect analysis in the obtained ERP data, respectively,
as an example to investigate human problem solving and to show the usefulness
of the proposed mining process. Finally, Section 5 gives concluding remarks.

2 Brain Informatics Methodology

Brain informatics pursues a holistic understanding of human intelligence through
a systematic approach to brain research. BI regarded the human brain as an
information processing system (HIPS) and emphasizes cognitive experiments to
understand its mechanisms for analyzing and managing data. Such systematic
study includes the following 4 main research issues:

systematic investigation of human thinking centric mechanisms;
— systematic design of cognitive experiments;

— systematic human brain data management;

systematic human brain data analysis.

The first issue is based on the observation for Web intelligence research needs
and the state-of-the-art cognitive neuroscience. In cognitive neuroscience, al-
though many advanced results with respect to “perception oriented” study have
been obtained, only a few of preliminary, separated studies with respect to
“thinking oriented” and/or a more whole information process have been re-
ported [I].

The second issue is with respect to how to design the psychological and phys-
iological experiments for obtaining various data from HIPS, in a systematic way.
In other words, by systematic design of cognitive experiments in BI methodol-
ogy, the data obtained from a cognitive experiment and/or a set of cognitive
experiments may be used for multi-task/purpose.

The third issue relates to manage human brain data, which is based on a
conceptual model of cognitive functions that represents functional relationships
among multiple human brain data sources for systematic investigation and un-
derstanding of human intelligence.
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Fig. 1. A flow based on BI methodology

The last issue is concerned with how to extract significant features from mul-
tiple brain data measured by using fMRI and EEG in preparation for multi-
aspect data analysis by combining various data mining methods with reasoning
EUGITOTTTS).

An investigation flow based on BI methodology is shown in Figure[l in which
various tools can be cooperatively used in the multi-step process for experimental
design, pre-processing (data extraction, modeling and transformation), multi-
aspect data mining and post-processing.

3 The Experiment of Mental Arithmetic Task with
Visual Stimuli

As mentioned above, based on BI methodology, the data obtained from a cog-
nitive experiment and/or a set of cognitive experiments may be used for multi-
task/purpose, including for investigating both lower and higher functions of
HIPS. For example, it is possible that our experiment can meet the following
requirements: investigating the mechanisms of human visual and auditory sys-
tems, computation, problem-solving (i.e. the computation process is regarded as
an example of problem-solving process), and the spatiotemporal feature and flow
of HIPS in general. Figure ] gives a computation process from the macro view-
points, with respect to several component functions of human solving problem,
such as attention, interpretation, short-term memory, understanding of work,
computation, checking.

In this work, the ERP (event-related potential) human brain waves are de-
rived by carrying out a mental arithmetic task with visual stimuli, as an exam-
ple to investigate human problem solving process. ERP is a light, sound, and
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Fig. 2. Computation as an example of problem-solving

brain potential produced with respect to the specific phenomenon of spontaneous
movement [2].

3.1 Outline of Experiments

The experiment conducted this time shows a numerical calculation problem to a
subject, and asks the subject to solve it in mental arithmetic, and the shown sum
has hit, or it pushes a button, and performs a judging of corrigenda. The form
of the numerical calculation to be shown are the addition problem of “augend +
addend = sum” or “augend, summand 1, summand 2, summand 3, summand 4
= sum”. The wrong sum occurs at half the probability, and the distribution is
not uniform.

In the experiments, three states (tasks), namely, on-task, off-task, and no-
task, exist by the difference in the stimulus given to a human subject. on-task is
the state which is calculating by looking a number. off-task is the state which is
looking the number that appears at random. no-task is the relaxed state which
does not work at all.

Figure [3 gives an example of the screen state transition. We set two presen-
tation types and three levels. Type A is the figure remains on the screen. But,
Type B is the figure doesn’t remain on the screen. Level 1 is single digit addition
(with no carry). Level 2 is double digits addition (with carry), and Level 3 is
continuous addition of 5 figures (one digit).

We try to compare and analyze what is the relationship between tasks. By this
design, it is possible to analyze the influence, in the different levels of difficulty,
with the same on-task and off-task, and to make a comparison between on-task
and off-task in the same difficulty.

3.2 Trigger Signal and Timing Chart

It is necessary to measure EEG relevant to a certain event to the regular timing
in measurement of ERP repeatedly. In this research, since the attention was paid
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Fig. 4. Timing chart of on-task

to each event of augend, addend, and sum presentation in calculation activities.
Pre-trigger was set to 200 [msec], and addition between two digits are recorded
in 1800 or 1400 [msec], respectively. Figure[4] gives an example of the time chart.
“au” is augend, “ad” is addend, “sm” is summand, and “su” is sum. Therefore
“au2” is MSD (last 2-digits) of augend, and “aul” is LSD (last 1-digits) of
augend.

3.3 Experimental Device and Measurement Conditions

Electroencephalographic activity was recorded using a 64 channel BrainAmp
amplifier (Brain Products, Munich, Germany) with a 64 electrode cap. The elec-
trode cap is based on an extended international 10-20 system. Furthermore, eye
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movement measurement (2ch) is also used. The sampling frequency is 2500Hz
to be processed. The number of experimental subjects is 20.

4 Multi-aspect Data Analysis (MDA)

It is possible that our experiment can meet the following requirements: inves-
tigating the mechanisms of human visual and auditory systems, computation,
problem-solving, and the spatiotemporal feature and flow of HIPS in general.
Furthermore, multi-aspect data analysis (MDA) can mine several kinds of rules
and hypotheses from different data sources. In this work, we use the three
methods, called the ERP data, potential topography, frequency topography (fre-
quency analysis) for multi-aspect data analysis. Furthermore, a more exact result
can be obtained by integration and explanation of MDA results.

The first method is the ERP analysis. In this work, the ERP (event-related
potential) human brain waves are derived by carrying out a mental arithmetic
task with visual stimuli, as an example to investigate human problem solving
process. ERP is a light, sound, and brain potential produced with respect to the
specific phenomenon of spontaneous movement [2].

The second method is the potential topography analysis. The advantage of
the potential topography is that it can catch electrical fluctuation by the view of
spatiotemporal. This means it makes possible for us to recognize distribution and
appearance of positive and negative potentials from macroperspective. Thus, we
can find the difference of features on the potentials that focus on each step of
computation process.

The third method is the frequency topography analysis. The advantage of
frequency topography is that it can catch frequency element fluctuation by the
view of spatiotemporal. This means it makes possible for us to recognize distri-
bution and appearance of alpha and beta waves from macroperspective. Thus,
we can find the difference of features on the frequency elements that focus on
each step of computation process. And we can also put medical knowledge to
practical use by analyzing frequency element.

4.1 ERP Analysis

For the measured EEG data, a maximum of 40 addition average processing were
performed, and the ERPs were derived by using Brain Vision Analyzer (Brain
Products, Munich, Germany). Generally speaking, the Wernicke area of a left
temporal lobe and the prefrontal area are related to the calculation process [5].
In this study, we pay attention to recognition of the number, short-term memory
and ,integrated processing, vision, as well as compare Type A and Type B by
focusing on important channels (Fz, FC5, Oz).

Figure Bl shows the ERP. We can see some difference between Type A and
Type B, or Level 1, Level 2 and Level 3. We focus on the Fz that is related with
memory of numbers and integrated processing. In the Type A which is low on
burden of memory, the positive potential is lower than that of Type B. On the
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Fig. 5. ERP comparison in Levels 2 and 3

other hand, delaying in the latent time and phenomenon that shows a strong
potential fluctuation has occurred in Level 3 which is high on burden and Level 2
of Type B.

4.2 Potential Topography Analysis

Figure [ shows the potential topography. In this part, the method is different
from those of ERP. We depaint to change in potentials from beginning of com-
putation time to end without any trigger signal. In Level 1, a positive potential
appears in the frontal cortex just when the subject judges an answer. In Level 3
which is an addition task of continuity, a positive potential appears all of the
time. And in the comparison of Type A with Type B in Level 2, a positive po-
tential appears just in the frontal cortex in Type A but it also appears in the
visual cortex in Type B. This result seems to be related with the difference of
the attention level in the visual scene.

4.3 Frequency Topography Analysis

Figure [ shows the frequency topography, which compares the strength of theta
wave with that of Alfa wave. Both theta and Alfa waves do not change so much in
the temporal axis. On the other hand, both Alfa and theta waves are decreasing
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in the frontal cortex of Level 3 when we focus on the difference of levels. This
phenomenon can be attributed to workload.

4.4 Peculiarity Oriented Mining

The result of making the best use of each feature was derived from two aspects,
the potential change and the frequency element, with different difficulty levels of
experiments. Furthermore, POM (Peculiarity Oriented Mining) based methods
are used for multi-aspect mining to find interesting time-band and space features
in the change of the potential change and the frequency element.

It is clear that a specific part of the brain operates in a specific time and the
operations change over time. Although detecting the concavity and convexity
(P300 etc.) of ERP data is easy by using the existing tool, it is difficult to find a
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peculiar one in multiple channels with the concavity and convexity [7I§]. In order
to discover new knowledge and models of human information processing activi-
ties, it is necessary to pay attention to the peculiar channel and time in ERPs
for investigating the spatiotemporal features and flow of a human information
processing system.

peculiarity oriented mining (POM) is a proposed knowledge discovery method-
ology [1415]. The main task of POM is the identification of peculiar data. The
attribute-oriented method of POM, which analyze data from a new view and
are different from traditional statistical methods, has been recently proposed
by Zhong et al. and applied in various real-world problems [I4/15]. Unfortu-
nately, such POM is not totally fit for ERP data analysis. The reason is that
the useful aspect for ERP data analysis is not amplitude, but the latent time.
In order to solve this problem, we extend POM to Peculiarity Vector Oriented
Mining (PVOM). After smoothing enough by moving average processing, in the
time series, we pay the attention to each potential towards N pole or P pole.
Furthermore, the channel with the direction different from a lot of channels is
considered to be a peculiar channel at that time. Hence, the distance between
the attribute-values is expressed at the angle. And this angle can be obtained
from the inner product and the norm in the vector. Let inclination of wave i in
a certain time ¢ be x;;. The extended PF (Peculiarity Factor) corresponding to
ERP can be defined by the following Eq. ().

PF(zi) = > 0(wi, xxt)" (1)
k=1

a = 0.5 as default. In normally POM, PF is obtained by distance between two
attribute values. However, 6 in Eq. (Il) is an angle which the wave in time ¢
makes. For the 6, we can compute for an angle using Eq. (2)).

T+ @i - wpe
VI+agy/1+ag,
Based on the peculiarity factor, the selection of peculiar data is simply carried
out by using a threshold value. More specifically, an attribute value is peculiar
if its peculiarity factor is above minimum peculiarity p, namely, PF(x;) > p.
The threshold value p may be computed by the distribution of PF' as follows:
threshold = mean of PF(z;) + (3)
0 x standard deviation of PF(x;;)

(2)

cost) =

where 3 can be adjusted by a user, and § =1 is used as default. The threshold
indicates that a data is a peculiar one if its PF value is much larger than the
mean of the PF set. In other words, if PF(x;;) is over the threshold value,
is a peculiar data. By adjusting the parameter §, a user can control and adjust
the threshold value.

In this work, we want to mine four kinds of patterns, which are classified into
two types of peculiarity with respect to the temporal and channel axises, respec-
tively, as shown in Figure [§l Mining 1 and Mining 2 are used to find temporal
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peculiarity, and Mining 3 and Mining 4 are used to find channel peculiarity,
respectively.

More specifically, Mining 1 examines whether the potential at arbitrary time
is peculiar compared with a baseline potential in channel X. Mining 2 examines
whether the potential at arbitrary time is peculiar compared with an ERP in
channel X. Mining 3 examines whether the potential of channel X is peculiar
compared with the potential on other channels in a specific time. Furthermore,
Mining 4 examines whether a potential change of channel X is peculiar compared
with a potential change on other channels in a specific time. As shown in Figure[§]
the POM method is used for the Mining 1 to Mining 3 and the extended POM
method (PVOM) is used for the Mining 4.

4.5 Integration and Explanation of Results

How to explain and integrate the results obtained by POM based multi-aspect
mining is a key issue. First of all, we examined an integrated model of the results
with MDA in consideration of the spatiotemporal features. Figure [Q provides a
global view of the proposed model for such an integration and explanation.
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In this figure, the horizontal axis denotes time, and the vertical axis denotes
region (channel, Brodmann area etc.). It becomes easy to discover a unique
phenomenon and new knowledge because the results obtained by POM based
multi-aspect mining are managed in a layered structure. On the other hand,
because the difference of the spatiotemporal resolution in MDA, it is important
that the representation of the results is based on adequate collation.

We have applied the POM based method to all channels in each difficulty
level for finding peculiar channels and time-bands. Some remarkable results were
obtained, especially in the FC5 and Iz. FC5 is located a little ahead in the left
temporal cortex, which is relevant to the function of language recognition. In
contrast, Iz is located a little backward, which is relevant to the function of
recognizing the image from eye. Here we discuss the change of peculiar values
which focus on the difference of difficulties in these two channels.

First, we discuss the change of PF (Peculiarity Factor) values in FC5 which
focuses on the difference between Type A and Type B in Level 2. Figure
shows the change of PF values of Type A and Type B of Level 2 in FC5. In
this figure, the X axis denotes the time, and the Y axis denotes PF values. A
time-band is regarded as a peculiar time-band if its PF value is over 0 since we
set y = 0 as a threshold. In Type B, the potential peculiarity is high on both
time and space. It is found out, from the result of Minings 1, 3 and 4, that FC5
is with more peculiarity than any other channels, because its potential change
is very big. Although Type B is with respect to the two-digit addition task, it
displays one-digit at a time. Therefore, we can guess that the subject recognizes
a current digit or number strongly every time it is displayed. The hypothesis
can been evidenced by the difference between Type A and Type B in Trgger 2,
which is taken when addend is displayed. Furthermore, medical knowledge and
insight can explain the result well.

Next, we discuss the change of peculiar values in Iz, which focuses on the
difference between Type A-Level 2 and Type B-Level 3. Figure [ shows the
change of PF values of Type A-Level 2 and Type B-Level 3 in Iz. From this
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figure, we can see that the potential change in Iz is very smaller than the change
in any other channels, from the results of Minings 2, 3 and 4. And it is found
out from the result of Mining 1 that the difference of potentials in Iz definitely
depends on a time-band. The difference between Type A and Type B is about
the visual attention. In Type A, numbers are remained on the screen. In contrast,
in Type B the subject must continue to add numbers with watching the change
on the screen. The mining result shows that the subjects in Type A is high for
the level of the gaze to the number to go in the latter half. We will give a more
deep discussion on the rationality of this result in other papers.

5 Conclusion

In this paper, we investigated human problem solving related functions by using
computation as an example, which demonstrate what is BI methodology and its
usefulness. The proposed POM centric multi-aspect ERP data analysis based
on BI methodology shifts the focus of cognitive science from a single type of
experimental data analysis towards a deep, holistic understanding of human
information processing principles, models and mechanisms.

Our future work includes obtaining and analyzing more subject data, com-
bining with fMRI human brain image data for multi-aspect analysis in various
approaches of data mining and reasoning.
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